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THE ROLE OF HASH TABLES
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 General data compression schemes used in common compression utilities

 In each of these fields, having a fast hash table is important
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 Each bucket is typically sized to one hardware cache line 
or less.

 Overwhelmingly, accesses to the bucket’s cache line hit in 
the hardware caches during accesses to consecutive cells.
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 Expected Positive Lookup Cost Per Item in Buckets: 
1.5 = (0.5 Hashed by H1) + 2 * (0.5 Hashed by H2)                              

Load balancing
Insert KV1 into the least 
full candidate bucket
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 Expected Positive Lookup Cost Per Item in Buckets: 
1.5 = (0.5 Hashed by H1) + 2 * (0.5 Hashed by H2)                              

 Expected Negative Lookup Cost per Item in Buckets: 
2 (also worst-case)

Load balancing
Insert KV1 into the least 
full candidate bucket
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First-fit
Insert KV1 into the first
candidate with a free slot
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Insert KV1 into the first
candidate with a free slot
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Insert KV1 into the first
candidate with a free slot
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LOOKUPS AND FIRST-FIT INSERTION HEURISTIC
BUCKETIZED CUCKOO HASH TABLES

First-fit
Insert KV1 into the first
candidate with a free slot

 Expected Positive Lookup Cost Per Item in Buckets: 
1 to 1.3ish depending on the table load factor and the slots per bucket                         
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LOOKUPS AND FIRST-FIT INSERTION HEURISTIC
BUCKETIZED CUCKOO HASH TABLES

First-fit
Insert KV1 into the first
candidate with a free slot

 Expected Positive Lookup Cost Per Item in Buckets: 
1 to 1.3ish depending on the table load factor and the slots per bucket                         

 Expected Negative Lookup Cost per Item in Buckets: 
2 (also worst-case)
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BENEFITS OF FIRST-FIT
BUCKETIZED CUCKOO HASH TABLES
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 Positive Lookups:

‒ First-fit gets us most of the way to 1.0 on positive lookups because most elements 
are hashed with H1
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 Positive Lookups:

‒ First-fit gets us most of the way to 1.0 on positive lookups because most elements 
are hashed with H1

 But…
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LIMITATIONS OF FIRST-FIT
BUCKETIZED CUCKOO HASH TABLES
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BUCKETIZED CUCKOO HASH TABLES
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 Expected Negative Lookup Cost per Item in Buckets: 

‒ First-fit doesn’t address the comparatively expensive negative lookup cost.  We still need to 
check all candidate buckets.
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LIMITATIONS OF FIRST-FIT
BUCKETIZED CUCKOO HASH TABLES
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 Expected Negative Lookup Cost per Item in Buckets: 

‒ First-fit doesn’t address the comparatively expensive negative lookup cost.  We still need to 
check all candidate buckets.
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HORTON TABLES
DESIGN GOALS

 Positive lookups that typically require accessing only 1 bucket per query

‒ If buckets are at most a cache line in size, then only 1 cache line is accessed as well.
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HORTON TABLES
DESIGN GOALS

 Positive lookups that typically require accessing only 1 bucket per query

‒ If buckets are at most a cache line in size, then only 1 cache line is accessed as well.

 Negative lookups that typically require accessing only 1 bucket per query

‒ If buckets are at most a cache line in size, then only 1 cache line is accessed as well.
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HORTON TABLES
DESIGN GOALS

 Positive lookups that typically require accessing only 1 bucket per query

‒ If buckets are at most a cache line in size, then only 1 cache line is accessed as well.

 Negative lookups that typically require accessing only 1 bucket per query

‒ If buckets are at most a cache line in size, then only 1 cache line is accessed as well.

 Retain a worst-case lookup cost of 2 buckets (i.e., often 2 hardware cache lines)
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HORTON TABLES
DESIGN GOALS

 Positive lookups that typically require accessing only 1 bucket per query

‒ If buckets are at most a cache line in size, then only 1 cache line is accessed as well.

 Negative lookups that typically require accessing only 1 bucket per query

‒ If buckets are at most a cache line in size, then only 1 cache line is accessed as well.

 Retain a worst-case lookup cost of 2 buckets (i.e., often 2 hardware cache lines)

 Achieve a load factor exceeding 0.95 (akin to a bucketized cuckoo hash table 
that uses 2 hash functions and 4-cell buckets)
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 Horton tables start off as standard bucketized cuckoo hash tables
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 Horton tables start off as standard bucketized cuckoo hash tables

 Like first-fit, they strongly bias inserts by using a primary hash function called Hprimary



|   HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING   |  JUNE 23, 201681

HORTON TABLES
PRIMARY INSERTIONS AND LOOKUPS
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 Horton tables start off as standard bucketized cuckoo hash tables

 Like first-fit, they strongly bias inserts by using a primary hash function called Hprimary

 Most positive lookups therefore only require accessing a single cache line
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HORTON TABLES
PRIMARY INSERTIONS AND LOOKUPS
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 Horton tables start off as standard bucketized cuckoo hash tables

 Like first-fit, they strongly bias inserts by using a primary hash function called Hprimary

 Most positive lookups therefore only require accessing a single cache line
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HORTON TABLES
PRIMARY INSERTIONS AND LOOKUPS
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 Horton tables start off as standard bucketized cuckoo hash tables

 Like first-fit, they strongly bias inserts by using a primary hash function called Hprimary

 Most positive lookups therefore only require accessing a single cache line
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 Horton tables start off as standard bucketized cuckoo hash tables

 Like first-fit, they strongly bias inserts by using a primary hash function called Hprimary

 Most positive lookups therefore only require accessing a single cache line
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 Horton tables start off as standard bucketized cuckoo hash tables

 Like first-fit, they strongly bias inserts by using a primary hash function called Hprimary

 Most positive lookups therefore only require accessing a single cache line
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HORTON TABLES
PRIMARY INSERTIONS AND LOOKUPS
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 Horton tables start off as standard bucketized cuckoo hash tables

 Like first-fit, they strongly bias inserts by using a primary hash function called Hprimary

 Most positive lookups therefore only require accessing a single cache line
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 Horton tables start off as standard bucketized cuckoo hash tables

 Like first-fit, they strongly bias inserts by using a primary hash function called Hprimary

 Most positive lookups therefore only require accessing a single cache line
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 Horton tables start off as standard bucketized cuckoo hash tables

 Like first-fit, they strongly bias inserts by using a primary hash function called Hprimary

 Most positive lookups therefore only require accessing a single cache line
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 Horton tables start off as standard bucketized cuckoo hash tables

 Like first-fit, they strongly bias inserts by using a primary hash function called Hprimary

 Most positive lookups therefore only require accessing a single cache line
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HORTON TABLES
INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY
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 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.
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 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.
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HORTON TABLES
INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY
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INSERT 23Hprimary16
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 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.
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HORTON TABLES
INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY
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INSERT 23Hprimary
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Evict 163
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 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.



|   HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING   |  JUNE 23, 201694

HORTON TABLES
INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY
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EMPTY EMPTY EMPTY 37
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INSERT 23Hprimary
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Evict 163
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 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.
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HORTON TABLES
INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY
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33 EMPTY 15 2
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EMPTY EMPTY EMPTY 37
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9 24 EMPTY EMPTY

INSERT 23Hprimary
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 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.
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HORTON TABLES
INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY
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 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.
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HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37
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HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY
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HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13 R1 INSERT 23
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INSERT 23

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13 R1 INSERT 23
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INSERT 23

INSERT 23

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13 R1 INSERT 23
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INSERT 23

INSERT 23

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13 R1 INSERT 23

16
R3

R2

0 20

Use R2 for inserting 23 because it maps 23 
to least full secondary bucket candidate.
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INSERT 23

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16
R2

0 20

Use R2 for inserting 23 because it maps 23 
to least full secondary bucket candidate.
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INSERT 23

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13
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R223

0 20

Use R2 for inserting 23 because it maps 23 
to least full secondary bucket candidate.
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INSERT 23

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16
R223

0 20

Use R2 for inserting 23 because it maps 23 
to least full secondary bucket candidate.

3

4

5

2

1

0

Compute index into remap entry array 
using Htag with key as input
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INSERT 23

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13
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Htag(23) = 17 
0 20

Use R2 for inserting 23 because it maps 23 
to least full secondary bucket candidate.
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2
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0

Compute index into remap entry array 
using Htag with key as input
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INSERT 23

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16
R223

Htag(23) = 17 
0 20

Use R2 for inserting 23 because it maps 23 
to least full secondary bucket candidate.

3

4

5

2

1

0

Compute index into remap entry array 
using Htag with key as input
Store 2 at index Htag(23)=17 to indicate 
that R2 was used to remap 23
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INSERT 23

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16
R223

Htag(23) = 17 
0 20

Use R2 for inserting 23 because it maps 23 
to least full secondary bucket candidate.

3

4

5

2

1

0

Compute index into remap entry array 
using Htag with key as input
Store 2 at index Htag(23)=17 to indicate 
that R2 was used to remap 23
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INSERT 23

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16
R223

Htag(23) = 17 
0 20

Use R2 for inserting 23 because it maps 23 
to least full secondary bucket candidate.

3
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2

1

0

2

Compute index into remap entry array 
using Htag with key as input
Store 2 at index Htag(23)=17 to indicate 
that R2 was used to remap 23
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HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY
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16 now also needs to be remapped to a 

secondary bucket.

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY
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16 now also needs to be remapped to a 

secondary bucket.

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY
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16 now also needs to be remapped to a 

secondary bucket.

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY
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16 now also needs to be remapped to a 

secondary bucket.

INSERT 16

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY
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16 now also needs to be remapped to a 

secondary bucket.

INSERT 16

INSERT 16

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY
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16 now also needs to be remapped to a 

secondary bucket.

INSERT 16

INSERT 16

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY
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16 now also needs to be remapped to a 

secondary bucket.

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY
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Use R3 for inserting 16 because it maps 16 
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16 now also needs to be remapped to a 

secondary bucket.

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY
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Use R3 for inserting 16 because it maps 16 
to least full secondary bucket candidate.
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16 now also needs to be remapped to a 

secondary bucket.

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY
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Use R3 for inserting 16 because it maps 16 
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Compute index into remap entry array 
using Htag with key as input
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16 now also needs to be remapped to a 

secondary bucket.

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY
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Compute index into remap entry array 
using Htag with key as input
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16 now also needs to be remapped to a 

secondary bucket.

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY
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EMPTY EMPTY EMPTY 37

17 6 21 EMPTY
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Htag(16) = 1 
0 20

Use R3 for inserting 16 because it maps 16 
to least full secondary bucket candidate.
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Compute index into remap entry array 
using Htag with key as input
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16 now also needs to be remapped to a 

secondary bucket.

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13
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R3

23

Htag(16) = 1 
0 20

Use R3 for inserting 16 because it maps 16 
to least full secondary bucket candidate.
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Compute index into remap entry array 
using Htag with key as input
Store 3 at index Htag(16)=1 to indicate 
that R3 was used to remap 16
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16 now also needs to be remapped to a 

secondary bucket.

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16

R3

23

Htag(16) = 1 
0 20

Use R3 for inserting 16 because it maps 16 
to least full secondary bucket candidate.

3

4

5

2

1

0

2

Compute index into remap entry array 
using Htag with key as input
Store 3 at index Htag(16)=1 to indicate 
that R3 was used to remap 16

16
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16 now also needs to be remapped to a 

secondary bucket.

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary 
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a 
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16

R3

23

Htag(16) = 1 
0 20

Use R3 for inserting 16 because it maps 16 
to least full secondary bucket candidate.

3

4

5

2

1

0

2

Compute index into remap entry array 
using Htag with key as input
Store 3 at index Htag(16)=1 to indicate 
that R3 was used to remap 16

16

3
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HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many 
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary 
bucket).  We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16
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HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many 
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary 
bucket).  We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

Compute primary hash function and 
examine primary bucket (bucket 2)
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HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many 
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary 
bucket).  We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

LOOKUP 16Hprimary

Compute primary hash function and 
examine primary bucket (bucket 2)
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HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many 
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary 
bucket).  We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

LOOKUP 16Hprimary

Compute primary hash function and 
examine primary bucket (bucket 2)
Determine 16 is not stored in its primary 
bucket and proceed to examine REA
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HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many 
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary 
bucket).  We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

0 20

3

4

5

2

1

0

2

16

3

Determine 16 is not stored in its primary 
bucket and proceed to examine REA
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HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many 
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary 
bucket).  We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

0 20

3

4

5

2

1

0

2

16

3

Determine 16 is not stored in its primary 
bucket and proceed to examine REA

Compute index into remap entry array 
using Htag with key as input
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HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many 
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary 
bucket).  We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

Htag(16) = 1 
0 20

3

4

5

2

1

0

2

16

3

Determine 16 is not stored in its primary 
bucket and proceed to examine REA

Compute index into remap entry array 
using Htag with key as input
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HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many 
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary 
bucket).  We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

Htag(16) = 1 
0 20

3

4

5

2

1

0

2

16

3

Determine 16 is not stored in its primary 
bucket and proceed to examine REA

Compute index into remap entry array 
using Htag with key as input
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HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many 
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary 
bucket).  We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

Htag(16) = 1 
0 20

3

4

5

2

1

0

2

16

3

Determine 16 is not stored in its primary 
bucket and proceed to examine REA

Compute index into remap entry array 
using Htag with key as input
The remap entry shows R3 was used to 
remap 16, so compute R3(16).
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LOOKUP 16

HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many 
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary 
bucket).  We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

R3

23

Htag(16) = 1 
0 20

3

4

5

2

1

0

2

16

3

Determine 16 is not stored in its primary 
bucket and proceed to examine REA

Compute index into remap entry array 
using Htag with key as input
The remap entry shows R3 was used to 
remap 16, so compute R3(16).
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LOOKUP 16

HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many 
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary 
bucket).  We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

R3

23

Htag(16) = 1 
0 20

3

4

5

2

1

0

2

16

3

Determine 16 is not stored in its primary 
bucket and proceed to examine REA

Compute index into remap entry array 
using Htag with key as input
The remap entry shows R3 was used to 
remap 16, so compute R3(16).
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LOOKUP 16

HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many 
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary 
bucket).  We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

R3

23

Htag(16) = 1 
0 20

3

4

5

2

1

0

2

16

3

Determine 16 is not stored in its primary 
bucket and proceed to examine REA

Compute index into remap entry array 
using Htag with key as input
The remap entry shows R3 was used to 
remap 16, so compute R3(16).

Retrieve 16 from bucket 3
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LOOKUP 16

HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many 
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary 
bucket).  We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

R3

23

Htag(16) = 1 
0 20

3

4

5

2

1

0

2

16

3

Determine 16 is not stored in its primary 
bucket and proceed to examine REA

Compute index into remap entry array 
using Htag with key as input
The remap entry shows R3 was used to 
remap 16, so compute R3(16).

Retrieve 16 from bucket 3
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HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16
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HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

Most negative lookups only 
require accessing a single bucket
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HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16 LOOKUP 25

Most negative lookups only 
require accessing a single bucket
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HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16 LOOKUP 25Hprimary

Most negative lookups only 
require accessing a single bucket
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HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16 LOOKUP 25Hprimary

Most negative lookups only 
require accessing a single bucket
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HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16 LOOKUP 25Hprimary

Most negative lookups only 
require accessing a single bucket
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HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16 LOOKUP 25Hprimary

Most negative lookups only 
require accessing a single bucket
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HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16 LOOKUP 25Hprimary

Most negative lookups only 
require accessing a single bucket
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HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16 LOOKUP 25Hprimary

 Lookups where the primary bucket is Type A, a conventional BCHT bucket without 
remap entries, only ever require examining 1 bucket and thus 1 cache line for 
positive and negative queries alike

Most negative lookups only 
require accessing a single bucket
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HORTON TABLES

 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike

NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

Most negative lookups only 
require accessing a single bucket
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HORTON TABLES

 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike

NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

LOOKUP 28

Most negative lookups only 
require accessing a single bucket
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HORTON TABLES

 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike

NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

LOOKUP 28Hprimary

Most negative lookups only 
require accessing a single bucket
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HORTON TABLES

 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike

NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

LOOKUP 28Hprimary

Most negative lookups only 
require accessing a single bucket
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HORTON TABLES

 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike

NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

LOOKUP 28Hprimary

Most negative lookups only 
require accessing a single bucket
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HORTON TABLES

 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike

NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

LOOKUP 28Hprimary

Most negative lookups only 
require accessing a single bucket



|   HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING   |  JUNE 23, 2016153

HORTON TABLES

 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike

NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

LOOKUP 28Hprimary

Most negative lookups only 
require accessing a single bucket
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Most negative lookups only 
require accessing a single bucket

HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

0 20

3

4

5

2

1

0

2

16

3

 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike
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Most negative lookups only 
require accessing a single bucket

HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

0 20

3

4

5

2

1

0

2

16

3

Determine 28 is not stored in its primary 
bucket (2) and proceed to examine REA

 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike
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Most negative lookups only 
require accessing a single bucket

HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

0 20

3

4

5

2

1

0

2

16

3

Determine 28 is not stored in its primary 
bucket (2) and proceed to examine REA
Compute index into remap entry array 
using Htag with key as input

 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike
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Most negative lookups only 
require accessing a single bucket

HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

Htag(28) = 10 
0 20

3

4

5

2

1

0

2

16

3

Determine 28 is not stored in its primary 
bucket (2) and proceed to examine REA
Compute index into remap entry array 
using Htag with key as input

 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike
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Most negative lookups only 
require accessing a single bucket

HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

Htag(28) = 10 
0 20

3

4

5

2

1

0

2
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Determine 28 is not stored in its primary 
bucket (2) and proceed to examine REA
Compute index into remap entry array 
using Htag with key as input
Examine 10th slot of remap entry array 
and see it is empty.  The search can stop.

 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike
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Negative lookups only require 
accessing 2 buckets on a tag alias
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 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike
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Negative lookups only require 
accessing 2 buckets on a tag alias
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 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike

LOOKUP 7
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Negative lookups only require 
accessing 2 buckets on a tag alias
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 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike

LOOKUP 7Hprimary
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Negative lookups only require 
accessing 2 buckets on a tag alias
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 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike
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Negative lookups only require 
accessing 2 buckets on a tag alias
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 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike
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Negative lookups only require 
accessing 2 buckets on a tag alias
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 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike
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Negative lookups only require 
accessing 2 buckets on a tag alias
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 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike

LOOKUP 7Hprimary
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Negative lookups only require 
accessing 2 buckets on a tag alias

HORTON TABLES
NEGATIVE LOOKUPS WITH TAG ALIAS
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Determine 7 is not stored in its primary 
bucket (2) and proceed to examine REA

 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike

LOOKUP 7Hprimary
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Negative lookup with a tag alias
(e.g., 7 reads remap entry set by 23)

HORTON TABLES
NEGATIVE LOOKUPS WITH TAG ALIAS
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 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike
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Negative lookup with a tag alias
(e.g., 7 reads remap entry set by 23)

HORTON TABLES
NEGATIVE LOOKUPS WITH TAG ALIAS
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Compute index into remap entry array 
using Htag with key as input

 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike



|   HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING   |  JUNE 23, 2016169

Negative lookup with a tag alias
(e.g., 7 reads remap entry set by 23)

HORTON TABLES
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Compute index into remap entry array 
using Htag with key as input

 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike
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Negative lookup with a tag alias
(e.g., 7 reads remap entry set by 23)

HORTON TABLES
NEGATIVE LOOKUPS WITH TAG ALIAS
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Compute index into remap entry array 
using Htag with key as input

Examine 18th slot of remap entry array and 
see that R2 was likely used to remap 7.

 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike
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Negative lookup with a tag alias
(e.g., 7 reads remap entry set by 23)
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Compute index into remap entry array 
using Htag with key as input

Examine 18th slot of remap entry array and 
see that R2 was likely used to remap 7.

 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike

LOOKUP 7
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Negative lookup with a tag alias
(e.g., 7 reads remap entry set by 23)

HORTON TABLES
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Compute index into remap entry array 
using Htag with key as input

Examine 18th slot of remap entry array and 
see that R2 was likely used to remap 7.

 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike

LOOKUP 7R2
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Negative lookup with a tag alias
(e.g., 7 reads remap entry set by 23)

HORTON TABLES
NEGATIVE LOOKUPS WITH TAG ALIAS
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Compute index into remap entry array 
using Htag with key as input

Examine 18th slot of remap entry array and 
see that R2 was likely used to remap 7.

 Lookups where the primary bucket is Type B, buckets where the final slot is 
converted into an REA, often only require accessing 1 bucket and at most 2 for 
positive and negative queries alike

LOOKUP 7R2

Determine that no slots of secondary 
bucket (0) match 7, so stop looking.
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ADDITIONAL CONTENT IN THE PAPER

 Sharing of remap entries among multiple remapped elements while still 
permitting their deletion

 Further optimizations for improving lookup throughput

 Analytical models for lookups, insertions and deletions

 More in-depth discussion of prior work and how Horton tables improves over 
first-fit for positive lookups
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EXPERIMENTAL METHODOLOGY

 Conducted a series of analytical studies to determine 8-slots per bucket was a 
good design point (more details in paper)

‒ Fills a 64-byte cache line with 8-byte entries

‒ High load factors (>95% table can be filled with key-value pairs)

‒ Positive lookups that typically access less than 1.18 buckets per query

‒ Negative lookups that typically access less than 1.06 buckets per query

 Further analytical studies demonstrated that 21 entries per REA and 7 
secondary functions is often more than sufficient for 8-slot buckets (more 
details in paper)

 Experimental studies conducted on an AMD RadeonTM R9 290X GPU
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RESULTS
POSITIVE
LOOKUPS

Bytes Transferred from DRAM per Query

Positive Lookup Throughput
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CONCLUSIONS FROM HORTON TABLES

 Achieves lookup throughput that meets or exceeds prior approaches
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CONCLUSIONS FROM HORTON TABLES

 Achieves lookup throughput that meets or exceeds prior approaches

 Throughput improvement is achieved by reducing the number of cache lines 
that need to be accessed per lookup query to at most 1.18 for positive lookups 
and 1.06 for negative lookups
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CONCLUSIONS FROM HORTON TABLES

 Achieves lookup throughput that meets or exceeds prior approaches

 Throughput improvement is achieved by reducing the number of cache lines 
that need to be accessed per lookup query to at most 1.18 for positive lookups 
and 1.06 for negative lookups

 Reducing cache accesses yields corresponding throughput improvements of 
5% to 35% and 73% to 89%, for pos. and neg. lookups, respectively, on a very 
full table.
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 Optimizing hash table algorithms is important because of their wide use 
throughout all segments of computing
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CONCLUSIONS FROM HORTON TABLES

 Achieves lookup throughput that meets or exceeds prior approaches

 Throughput improvement is achieved by reducing the number of cache lines 
that need to be accessed per lookup query to at most 1.18 for positive lookups 
and 1.06 for negative lookups

 Reducing cache accesses yields corresponding throughput improvements of 
5% to 35% and 73% to 89%, for pos. and neg. lookups, respectively, on a very 
full table.

 Optimizing hash table algorithms is important because of their wide use 
throughout all segments of computing

‒ e.g., scientific computing and databases, data compression, computer graphics and 
data visualization
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FUTURE WORK

 Evaluation of insertions and deletions and their optimization

‒ Write- and update-heavy workloads should also benefit from Horton tables approach.

 Application of Horton tables to data warehousing and analysis applications

‒ Database operators’ implementations (e.g., hash joins and grouping hash tables)

‒ Key-value stores

 Additional indices for speeding up lookups, insertions, and deletions

 Evaluation of Horton tables on new and emerging memory subsystems as well 
as tailoring the technique for persistent storage technologies such as SSDs
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QUESTIONS?

Thanks for your attention.
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DISCLAIMER & ATTRIBUTION
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typographical errors.
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only and may be trademarks of their respective owners.
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BACKUP
SLIDES
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HORTON TABLES

 We permit a single remap entry to reference multiple remapped elements.

 Deleting remap entries is possible by having elements that share remap entries 
map to the same secondary bucket (see our paper for details).
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HORTON TABLES

 We permit a single remap entry to reference multiple remapped elements.

 Deleting remap entries is possible by having elements that share remap entries 
map to the same secondary bucket (see our paper for details).
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HORTON TABLES

 We permit a single remap entry to reference multiple remapped elements.

 Deleting remap entries is possible by having elements that share remap entries 
map to the same secondary bucket (see our paper for details).
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We conclude that bucket 2 has no free 
slots, so we need to remap it.
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HORTON TABLES

 We permit a single remap entry to reference multiple remapped elements.

 Deleting remap entries is possible by having elements that share remap entries 
map to the same secondary bucket (see our paper for details).
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HORTON TABLES

 We permit a single remap entry to reference multiple remapped elements.

 Deleting remap entries is possible by having elements that share remap entries 
map to the same secondary bucket (see our paper for details).

SHARING OF REMAP ENTRIES
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Htag(27) = 1 
0 20

23

Compute the Htag on the key
We see that the remap entry is set,

so we try to use R3 to insert 27.
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 We permit a single remap entry to reference multiple remapped elements.

 Deleting remap entries is possible by having elements that share remap entries 
map to the same secondary bucket (see our paper for details).
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Compute the Htag on the key
We see that the remap entry is set,

so we try to use R3 to insert 27.

INSERT 27
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 We permit a single remap entry to reference multiple remapped elements.

 Deleting remap entries is possible by having elements that share remap entries 
map to the same secondary bucket (see our paper for details).
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Compute the Htag on the key
We see that the remap entry is set,

so we try to use R3 to insert 27.

INSERT 27R3
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 We permit a single remap entry to reference multiple remapped elements.

 Deleting remap entries is possible by having elements that share remap entries 
map to the same secondary bucket (see our paper for details).
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Compute the Htag on the key
We see that the remap entry is set,

so we try to use R3 to insert 27.

INSERT 27R3
27

The insertion succeeds because the 
secondary bucket (3) has a free slot.
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SHARING OF REMAP ENTRIES
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Compute the Htag on the key
We see that the remap entry is set,

so we try to use R3 to insert 27.

INSERT 27R3
27

The insertion succeeds because the 
secondary bucket (3) has a free slot.

 If bucket 3 had been full, we could have swapped 27 with another item from 
27’s primary bucket (2) (e.g., 35) and remapped that item instead.
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SHARING OF REMAP ENTRIES
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Compute the Htag on the key
We see that the remap entry is set,

so we try to use R3 to insert 27.

INSERT 27R3
27

The insertion succeeds because the 
secondary bucket (3) has a free slot.

 If bucket 3 had been full, we could have swapped 27 with another item from 
27’s primary bucket (2) (e.g., 35) and remapped that item instead.

 Alternatively, we could try to remap both 27 and 16 to another shared bucket 
with a different secondary hash function, but this is more likely to fail.
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 Deleting elements that are found in their primary bucket only requires 
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup 
followed by a deletion
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 Deleting elements that are found in their primary bucket only requires 
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 Deleting elements that are found in their primary bucket only requires 
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 Deleting elements that are found in their primary bucket only requires 
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup 
followed by a deletion
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27 is not found in its primary bucket; we 
need to access the remap entry array.
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 Deleting elements that are found in their primary bucket only requires 
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup 
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27 is not found in its primary bucket; we 
need to access the remap entry array.
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 Deleting elements that are found in their primary bucket only requires 
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup 
followed by a deletion
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27 is not found in its primary bucket; we 
need to access the remap entry array.

Htag(27) = 1 
0 20
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DELETE 27R3

Search R3(27) = 3 and delete it upon 
discovery.
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 Deleting elements that are found in their primary bucket only requires 
accessing a single bucket
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followed by a deletion
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27 is not found in its primary bucket; we 
need to access the remap entry array.
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DELETE 27R3

Search R3(27) = 3 and delete it upon 
discovery.
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 Deleting elements that are found in their primary bucket only requires 
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup 
followed by a deletion
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27 is not found in its primary bucket; we 
need to access the remap entry array.

Htag(27) = 1 
0 20
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DELETE 27R3

Search R3(27) = 3 and delete it upon 
discovery.
Compute Hprimary on 16 and 37 and find 
that the remap entry is still active.
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 Deleting elements that are found in their primary bucket only requires 
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 A remapped element can be deleted by performing a secondary lookup 
followed by a deletion
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27 is not found in its primary bucket; we 
need to access the remap entry array.

Htag(27) = 1 
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DELETE 27R3

Search R3(27) = 3 and delete it upon 
discovery.
Compute Hprimary on 16 and 37 and find 
that the remap entry is still active.
A subsequent deletion of 16 would cause 
the remap entry to be deleted.
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Search R3(27) = 3 and delete it upon 
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Compute Hprimary on 16 and 37 and find 
that the remap entry is still active.
A subsequent deletion of 16 would cause 
the remap entry to be deleted.
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 Deleting elements that are found in their primary bucket only requires 
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup 
followed by a deletion
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27 is not found in its primary bucket; we 
need to access the remap entry array.

Htag(27) = 1 
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DELETE 27R3

Search R3(27) = 3 and delete it upon 
discovery.
Compute Hprimary on 16 and 37 and find 
that the remap entry is still active.
A subsequent deletion of 16 would cause 
the remap entry to be deleted.
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