
HORTON TABLES: FAST HASH TABLES FOR
IN-MEMORY DATA-INTENSIVE COMPUTING

ALEX D. BRESLOW, DONG PING ZHANG, JOSEPH L. GREATHOUSE,
NUWAN JAYASENA, AND DEAN M. TULLSEN

6/23/2016

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 20162

THE ROLE OF HASH TABLES

 Data stores and caches

‒ Key-value stores (e.g., Memcached, Redis, MongoDB)

‒ Relational databases (e.g., MonetDB, HyPer, IBM DB2 with BLU)

‒ Hash indexes

‒ Join implementation: hash join and variants

‒ Grouping: grouping hash table

‒ Dictionary encoding

IN IN-MEMORY DATA-INTENSIVE COMPUTING

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 20163

THE ROLE OF HASH TABLES

 Data stores and caches

‒ Key-value stores (e.g., Memcached, Redis, MongoDB)

‒ Relational databases (e.g., MonetDB, HyPer, IBM DB2 with BLU)

‒ Hash indexes

‒ Join implementation: hash join and variants

‒ Grouping: grouping hash table

‒ Dictionary encoding

 Graphics

‒ Accelerate computations by computing on hash tables that store sparse images,
textures, or surfaces

IN IN-MEMORY DATA-INTENSIVE COMPUTING

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 20164

THE ROLE OF HASH TABLES

 Data stores and caches

‒ Key-value stores (e.g., Memcached, Redis, MongoDB)

‒ Relational databases (e.g., MonetDB, HyPer, IBM DB2 with BLU)

‒ Hash indexes

‒ Join implementation: hash join and variants

‒ Grouping: grouping hash table

‒ Dictionary encoding

 Graphics

‒ Accelerate computations by computing on hash tables that store sparse images,
textures, or surfaces

 General data compression schemes used in common compression utilities

IN IN-MEMORY DATA-INTENSIVE COMPUTING

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 20165

THE ROLE OF HASH TABLES

 Data stores and caches

‒ Key-value stores (e.g., Memcached, Redis, MongoDB)

‒ Relational databases (e.g., MonetDB, HyPer, IBM DB2 with BLU)

‒ Hash indexes

‒ Join implementation: hash join and variants

‒ Grouping: grouping hash table

‒ Dictionary encoding

 Graphics

‒ Accelerate computations by computing on hash tables that store sparse images,
textures, or surfaces

 General data compression schemes used in common compression utilities

 In each of these fields, having a fast hash table is important

IN IN-MEMORY DATA-INTENSIVE COMPUTING

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 20166

FOCUS OF THIS TALK
OPTIMIZING MEMORY ACCESSES IN FAST IN-MEMORY HASH TABLES

COMPUTE
ELEMENTS

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 20167

FOCUS OF THIS TALK
OPTIMIZING MEMORY ACCESSES IN FAST IN-MEMORY HASH TABLES

PRIVATE
CACHES

COMPUTE
ELEMENTS

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 20168

FOCUS OF THIS TALK
OPTIMIZING MEMORY ACCESSES IN FAST IN-MEMORY HASH TABLES

SHARED

LLCs

PRIVATE
CACHES

COMPUTE
ELEMENTS

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 20169

FOCUS OF THIS TALK
OPTIMIZING MEMORY ACCESSES IN FAST IN-MEMORY HASH TABLES

MAIN

MEMORY

SHARED

LLCs

PRIVATE
CACHES

COMPUTE
ELEMENTS

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201610

FOCUS OF THIS TALK
OPTIMIZING MEMORY ACCESSES IN FAST IN-MEMORY HASH TABLES

MAIN

MEMORY

SHARED

LLCs

PRIVATE
CACHES

COMPUTE
ELEMENTS

 Hash tables have poor temporal and spatial locality.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201611

FOCUS OF THIS TALK
OPTIMIZING MEMORY ACCESSES IN FAST IN-MEMORY HASH TABLES

MAIN

MEMORY

SHARED

LLCs

PRIVATE
CACHES

COMPUTE
ELEMENTS

 Hash tables have poor temporal and spatial locality.

 In-memory hash tables often have hot working sets that are bigger than LLCs.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201612

FOCUS OF THIS TALK
OPTIMIZING MEMORY ACCESSES IN FAST IN-MEMORY HASH TABLES

MAIN

MEMORY

SHARED

LLCs

PRIVATE
CACHES

COMPUTE
ELEMENTS

 Hash tables have poor temporal and spatial locality.

 In-memory hash tables often have hot working sets that are bigger than LLCs.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201613

FOCUS OF THIS TALK
OPTIMIZING MEMORY ACCESSES IN FAST IN-MEMORY HASH TABLES

MAIN

MEMORY

SHARED

LLCs

PRIVATE
CACHES

COMPUTE
ELEMENTS

 Hash tables have poor temporal and spatial locality.

 In-memory hash tables often have hot working sets that are bigger than LLCs.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201614

FOCUS OF THIS TALK
OPTIMIZING MEMORY ACCESSES IN FAST IN-MEMORY HASH TABLES

MAIN

MEMORY

SHARED

LLCs

PRIVATE
CACHES

COMPUTE
ELEMENTS

 Hash tables have poor temporal and spatial locality.

 In-memory hash tables often have hot working sets that are bigger than LLCs.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201615

FOCUS OF THIS TALK
OPTIMIZING MEMORY ACCESSES IN FAST IN-MEMORY HASH TABLES

MAIN

MEMORY

SHARED

LLCs

PRIVATE
CACHES

COMPUTE
ELEMENTS

 Hash tables have poor temporal and spatial locality.

 In-memory hash tables often have hot working sets that are bigger than LLCs.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201616

FOCUS OF THIS TALK
OPTIMIZING MEMORY ACCESSES IN FAST IN-MEMORY HASH TABLES

MAIN

MEMORY

SHARED

LLCs

PRIVATE
CACHES

COMPUTE
ELEMENTS

Comparatively low
bandwidth and high
latency per memory
transaction leads to

memory-
boundedness

 Hash tables have poor temporal and spatial locality.

 In-memory hash tables often have hot working sets that are bigger than LLCs.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201617

FOCUS OF THIS TALK
OPTIMIZING MEMORY ACCESSES IN FAST IN-MEMORY HASH TABLES

MAIN

MEMORY

SHARED

LLCs

PRIVATE
CACHES

COMPUTE
ELEMENTS

Comparatively low
bandwidth and high
latency per memory
transaction leads to

memory-
boundedness

We need to
aggressively

optimize hash
tables to be

cognizant of this
limitation

 Hash tables have poor temporal and spatial locality.

 In-memory hash tables often have hot working sets that are bigger than LLCs.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201618

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201619

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201620

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201621

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

Load balancing
Insert KV1 into the least
full candidate bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201622

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

Load balancing
Insert KV1 into the least
full candidate bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201623

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

KV1

Load balancing
Insert KV1 into the least
full candidate bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201624

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

Load balancing
Insert KV1 into the least
full candidate bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201625

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

Load balancing
Insert KV1 into the least
full candidate bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201626

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201627

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

First-fit
Evaluate the hash functions
in numerical order and
insert KV1 into the first
candidate bucket with a
free slot

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201628

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

First-fit
Evaluate the hash functions
in numerical order and
insert KV1 into the first
candidate bucket with a
free slot

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201629

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0 KV1

First-fit
Evaluate the hash functions
in numerical order and
insert KV1 into the first
candidate bucket with a
free slot

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201630

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

3

4

5

6

2

1

0 KV1

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201631

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

INSERT KV2

H2

H1

3

4

5

6

2

1

0 KV1

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201632

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

INSERT KV2

H2

H1

3

4

5

6

2

1

0

Discover cuckoo chain
with breadth-first search

KV1

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201633

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

INSERT KV2

H2

H1

3

4

5

6

2

1

0

Discover cuckoo chain
with breadth-first search

KV1

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201634

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

INSERT KV2

H2

H1

3

4

5

6

2

1

0

Discover cuckoo chain
with breadth-first search

KV1

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201635

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

INSERT KV2

H2

H1

3

4

5

6

2

1

0

Discover cuckoo chain
with breadth-first search

KV1

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201636

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

INSERT KV2

H1

3

4

5

6

2

1

0

Discover cuckoo chain
with breadth-first search

KV1

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201637

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

INSERT KV2

H1

3

4

5

6

2

1

0

Discover cuckoo chain
with breadth-first search
Remap in sequence with
alternate hash function

KV1

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201638

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

INSERT KV2

H1

3

4

5

6

2

1

0

e

Discover cuckoo chain
with breadth-first search
Remap in sequence with
alternate hash function

KV1

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201639

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

INSERT KV2

H1

3

4

5

6

2

1

0

e

m

Discover cuckoo chain
with breadth-first search
Remap in sequence with
alternate hash function

KV1

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201640

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

INSERT KV2

H1

3

4

5

6

2

1

0

e

m

u

Discover cuckoo chain
with breadth-first search
Remap in sequence with
alternate hash function

KV1

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201641

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

INSERT KV2

H1

3

4

5

6

2

1

0

e

m

u

KV2

Discover cuckoo chain
with breadth-first search
Remap in sequence with
alternate hash function

KV1

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201642

BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

INSERT KV2

H1

3

4

5

6

2

1

0

e

m

u

KV2

Discover cuckoo chain
with breadth-first search
Remap in sequence with
alternate hash function

KV1

 Each bucket is typically sized to one hardware cache line
or less.

 Overwhelmingly, accesses to the bucket’s cache line hit in
the hardware caches during accesses to consecutive cells.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201643

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

LOOKUPS AND LOAD BALANCING HEURISTIC
BUCKETIZED CUCKOO HASH TABLES

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201644

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

LOOKUPS AND LOAD BALANCING HEURISTIC
BUCKETIZED CUCKOO HASH TABLES

 Expected Positive Lookup Cost Per Item in Buckets:
(Fraction of Items Hashed by H1) + 2 * (Fraction of Items Hashed by H2)

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201645

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

LOOKUPS AND LOAD BALANCING HEURISTIC
BUCKETIZED CUCKOO HASH TABLES

 Expected Positive Lookup Cost Per Item in Buckets:
(Fraction of Items Hashed by H1) + 2 * (Fraction of Items Hashed by H2)

 Expected Negative Lookup Cost per Item in Buckets:
2 (also worst-case)

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201646

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

LOOKUPS AND LOAD BALANCING HEURISTIC
BUCKETIZED CUCKOO HASH TABLES

Load balancing
Insert KV1 into the least
full candidate bucket

 Expected Positive Lookup Cost Per Item in Buckets:
(Fraction of Items Hashed by H1) + 2 * (Fraction of Items Hashed by H2)

 Expected Negative Lookup Cost per Item in Buckets:
2 (also worst-case)

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201647

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

LOOKUPS AND LOAD BALANCING HEURISTIC
BUCKETIZED CUCKOO HASH TABLES

Load balancing
Insert KV1 into the least
full candidate bucket

 Expected Positive Lookup Cost Per Item in Buckets:
(Fraction of Items Hashed by H1) + 2 * (Fraction of Items Hashed by H2)

 Expected Negative Lookup Cost per Item in Buckets:
2 (also worst-case)

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201648

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

KV1

LOOKUPS AND LOAD BALANCING HEURISTIC
BUCKETIZED CUCKOO HASH TABLES

Load balancing
Insert KV1 into the least
full candidate bucket

 Expected Positive Lookup Cost Per Item in Buckets:
(Fraction of Items Hashed by H1) + 2 * (Fraction of Items Hashed by H2)

 Expected Negative Lookup Cost per Item in Buckets:
2 (also worst-case)

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201649

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

KV1

LOOKUPS AND LOAD BALANCING HEURISTIC
BUCKETIZED CUCKOO HASH TABLES

Load balancing
Insert KV1 into the least
full candidate bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201650

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

KV1

LOOKUPS AND LOAD BALANCING HEURISTIC
BUCKETIZED CUCKOO HASH TABLES

 Expected Positive Lookup Cost Per Item in Buckets:
1.5 = (0.5 Hashed by H1) + 2 * (0.5 Hashed by H2)

Load balancing
Insert KV1 into the least
full candidate bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201651

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

KV1

LOOKUPS AND LOAD BALANCING HEURISTIC
BUCKETIZED CUCKOO HASH TABLES

 Expected Positive Lookup Cost Per Item in Buckets:
1.5 = (0.5 Hashed by H1) + 2 * (0.5 Hashed by H2)

 Expected Negative Lookup Cost per Item in Buckets:
2 (also worst-case)

Load balancing
Insert KV1 into the least
full candidate bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201652

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

LOOKUPS AND FIRST-FIT INSERTION HEURISTIC
BUCKETIZED CUCKOO HASH TABLES

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201653

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

LOOKUPS AND FIRST-FIT INSERTION HEURISTIC
BUCKETIZED CUCKOO HASH TABLES

First-fit
Insert KV1 into the first
candidate with a free slot

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201654

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0

LOOKUPS AND FIRST-FIT INSERTION HEURISTIC
BUCKETIZED CUCKOO HASH TABLES

First-fit
Insert KV1 into the first
candidate with a free slot

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201655

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0 KV1

LOOKUPS AND FIRST-FIT INSERTION HEURISTIC
BUCKETIZED CUCKOO HASH TABLES

First-fit
Insert KV1 into the first
candidate with a free slot

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201656

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0 KV1

LOOKUPS AND FIRST-FIT INSERTION HEURISTIC
BUCKETIZED CUCKOO HASH TABLES

First-fit
Insert KV1 into the first
candidate with a free slot

 Expected Positive Lookup Cost Per Item in Buckets:
1 to 1.3ish depending on the table load factor and the slots per bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201657

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

H2

H1

INSERT KV1

KEY VALUE

3

4

5

6

2

1

0 KV1

LOOKUPS AND FIRST-FIT INSERTION HEURISTIC
BUCKETIZED CUCKOO HASH TABLES

First-fit
Insert KV1 into the first
candidate with a free slot

 Expected Positive Lookup Cost Per Item in Buckets:
1 to 1.3ish depending on the table load factor and the slots per bucket

 Expected Negative Lookup Cost per Item in Buckets:
2 (also worst-case)

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201658

BENEFITS OF FIRST-FIT
BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

H2
3

4

5

6

2

1

0

e

m

u

KV2

KV1

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201659

BENEFITS OF FIRST-FIT
BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

H2
3

4

5

6

2

1

0

e

m

u

KV2

KV1

LOOKUP KV1

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201660

BENEFITS OF FIRST-FIT
BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

H2
3

4

5

6

2

1

0

e

m

u

KV2

KV1 H1

LOOKUP KV1

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201661

BENEFITS OF FIRST-FIT
BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

H2
3

4

5

6

2

1

0

e

m

u

KV2

KV1 H1

LOOKUP KV1

a.key == KV1.key?

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201662

BENEFITS OF FIRST-FIT
BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

H2
3

4

5

6

2

1

0

e

m

u

KV2

KV1 H1

LOOKUP KV1

a.key == KV1.key?

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201663

BENEFITS OF FIRST-FIT
BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

H2
3

4

5

6

2

1

0

e

m

u

KV2

KV1 H1

LOOKUP KV1

a.key == KV1.key?b

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201664

BENEFITS OF FIRST-FIT
BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

H2
3

4

5

6

2

1

0

e

m

u

KV2

KV1 H1

LOOKUP KV1

a.key == KV1.key?b

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201665

BENEFITS OF FIRST-FIT
BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

H2
3

4

5

6

2

1

0

e

m

u

KV2

KV1 H1

LOOKUP KV1

a.key == KV1.key?bc

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201666

BENEFITS OF FIRST-FIT
BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

H2
3

4

5

6

2

1

0

e

m

u

KV2

KV1 H1

LOOKUP KV1

a.key == KV1.key?bc

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201667

BENEFITS OF FIRST-FIT
BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

H2
3

4

5

6

2

1

0

e

m

u

KV2

KV1 H1

LOOKUP KV1

a.key == KV1.key?bcKV1

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201668

BENEFITS OF FIRST-FIT
BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

LOOKUP KV2

H2

H1

3

4

5

6

2

1

0

e

m

u

KV2

KV1 H1

LOOKUP KV1

a.key == KV1.key?bcKV1

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201669

BENEFITS OF FIRST-FIT
BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

LOOKUP KV2

H2

H1

3

4

5

6

2

1

0

e

m

u

KV2

KV1 H1

LOOKUP KV1

a.key == KV1.key?bcKV1

 Positive Lookups:

‒ First-fit gets us most of the way to 1.0 on positive lookups because most elements
are hashed with H1

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201670

BENEFITS OF FIRST-FIT
BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

LOOKUP KV2

H2

H1

3

4

5

6

2

1

0

e

m

u

KV2

KV1 H1

LOOKUP KV1

a.key == KV1.key?bcKV1

 Positive Lookups:

‒ First-fit gets us most of the way to 1.0 on positive lookups because most elements
are hashed with H1

 But…

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201671

LIMITATIONS OF FIRST-FIT
BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

H2

3

4

5

6

2

1

0

e

m

u

KV2

KV1

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201672

LIMITATIONS OF FIRST-FIT
BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

H2

3

4

5

6

2

1

0

e

m

u

KV2

KV1

 Expected Negative Lookup Cost per Item in Buckets:

‒ First-fit doesn’t address the comparatively expensive negative lookup cost. We still need to
check all candidate buckets.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201673

LIMITATIONS OF FIRST-FIT
BUCKETIZED CUCKOO HASH TABLES

a b c EMPTY

d e f g

h EMPTY EMPTY EMPTY

i j k l

m n o p

q r s EMPTY

t u v w

KEY VALUE

H2

3

4

5

6

2

1

0

e

m

u

KV2

KV1

H1

H2

LOOKUP KV3

 Expected Negative Lookup Cost per Item in Buckets:

‒ First-fit doesn’t address the comparatively expensive negative lookup cost. We still need to
check all candidate buckets.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201674

HORTON TABLES
DESIGN GOALS

 Positive lookups that typically require accessing only 1 bucket per query

‒ If buckets are at most a cache line in size, then only 1 cache line is accessed as well.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201675

HORTON TABLES
DESIGN GOALS

 Positive lookups that typically require accessing only 1 bucket per query

‒ If buckets are at most a cache line in size, then only 1 cache line is accessed as well.

 Negative lookups that typically require accessing only 1 bucket per query

‒ If buckets are at most a cache line in size, then only 1 cache line is accessed as well.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201676

HORTON TABLES
DESIGN GOALS

 Positive lookups that typically require accessing only 1 bucket per query

‒ If buckets are at most a cache line in size, then only 1 cache line is accessed as well.

 Negative lookups that typically require accessing only 1 bucket per query

‒ If buckets are at most a cache line in size, then only 1 cache line is accessed as well.

 Retain a worst-case lookup cost of 2 buckets (i.e., often 2 hardware cache lines)

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201677

HORTON TABLES
DESIGN GOALS

 Positive lookups that typically require accessing only 1 bucket per query

‒ If buckets are at most a cache line in size, then only 1 cache line is accessed as well.

 Negative lookups that typically require accessing only 1 bucket per query

‒ If buckets are at most a cache line in size, then only 1 cache line is accessed as well.

 Retain a worst-case lookup cost of 2 buckets (i.e., often 2 hardware cache lines)

 Achieve a load factor exceeding 0.95 (akin to a bucketized cuckoo hash table
that uses 2 hash functions and 4-cell buckets)

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201678

HORTON TABLES
PRIMARY INSERTIONS AND LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 EMPTY

EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

3

4

5

2

1

0

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201679

HORTON TABLES
PRIMARY INSERTIONS AND LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 EMPTY

EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

3

4

5

2

1

0

 Horton tables start off as standard bucketized cuckoo hash tables

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201680

HORTON TABLES
PRIMARY INSERTIONS AND LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 EMPTY

EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

3

4

5

2

1

0

 Horton tables start off as standard bucketized cuckoo hash tables

 Like first-fit, they strongly bias inserts by using a primary hash function called Hprimary

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201681

HORTON TABLES
PRIMARY INSERTIONS AND LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 EMPTY

EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

3

4

5

2

1

0

 Horton tables start off as standard bucketized cuckoo hash tables

 Like first-fit, they strongly bias inserts by using a primary hash function called Hprimary

 Most positive lookups therefore only require accessing a single cache line

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201682

HORTON TABLES
PRIMARY INSERTIONS AND LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 EMPTY

EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

INSERT 13Hprimary

3

4

5

2

1

0

 Horton tables start off as standard bucketized cuckoo hash tables

 Like first-fit, they strongly bias inserts by using a primary hash function called Hprimary

 Most positive lookups therefore only require accessing a single cache line

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201683

HORTON TABLES
PRIMARY INSERTIONS AND LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 EMPTY

EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13 INSERT 13Hprimary

3

4

5

2

1

0

 Horton tables start off as standard bucketized cuckoo hash tables

 Like first-fit, they strongly bias inserts by using a primary hash function called Hprimary

 Most positive lookups therefore only require accessing a single cache line

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201684

HORTON TABLES
PRIMARY INSERTIONS AND LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 EMPTY

EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

3

4

5

2

1

0

 Horton tables start off as standard bucketized cuckoo hash tables

 Like first-fit, they strongly bias inserts by using a primary hash function called Hprimary

 Most positive lookups therefore only require accessing a single cache line

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201685

HORTON TABLES
PRIMARY INSERTIONS AND LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 EMPTY

EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

INSERT 16Hprimary

13

3

4

5

2

1

0

 Horton tables start off as standard bucketized cuckoo hash tables

 Like first-fit, they strongly bias inserts by using a primary hash function called Hprimary

 Most positive lookups therefore only require accessing a single cache line

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201686

HORTON TABLES
PRIMARY INSERTIONS AND LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 EMPTY

EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

INSERT 16Hprimary16

13

3

4

5

2

1

0

 Horton tables start off as standard bucketized cuckoo hash tables

 Like first-fit, they strongly bias inserts by using a primary hash function called Hprimary

 Most positive lookups therefore only require accessing a single cache line

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201687

HORTON TABLES
PRIMARY INSERTIONS AND LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 EMPTY

EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

16

13

3

4

5

2

1

0

 Horton tables start off as standard bucketized cuckoo hash tables

 Like first-fit, they strongly bias inserts by using a primary hash function called Hprimary

 Most positive lookups therefore only require accessing a single cache line

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201688

HORTON TABLES
PRIMARY INSERTIONS AND LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 EMPTY

EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

16

13 Hprimary LOOKUP 13

3

4

5

2

1

0

 Horton tables start off as standard bucketized cuckoo hash tables

 Like first-fit, they strongly bias inserts by using a primary hash function called Hprimary

 Most positive lookups therefore only require accessing a single cache line

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201689

HORTON TABLES
PRIMARY INSERTIONS AND LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 EMPTY

EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

Hprimary16

13 Hprimary LOOKUP 13

LOOKUP 16

3

4

5

2

1

0

 Horton tables start off as standard bucketized cuckoo hash tables

 Like first-fit, they strongly bias inserts by using a primary hash function called Hprimary

 Most positive lookups therefore only require accessing a single cache line

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201690

HORTON TABLES
INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

16

13

3

4

5

2

1

0

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201691

HORTON TABLES
INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

INSERT 23Hprimary16

13

3

4

5

2

1

0

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201692

HORTON TABLES
INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

INSERT 23Hprimary16

13

Evict 163

4

5

2

1

0

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201693

HORTON TABLES
INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

INSERT 23Hprimary

13

Evict 163

4

5

2

1

0

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201694

HORTON TABLES
INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

INSERT 23Hprimary

13

Evict 163

4

5

2

1

0

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

16

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201695

HORTON TABLES
INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

INSERT 23Hprimary

13

3

4

5

2

1

0

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

16

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201696

HORTON TABLES
INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

INSERT 23

13

3

4

5

2

1

0

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

16

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201697

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16

3

4

5

2

1

0

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201698

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16

0 20

3

4

5

2

1

0

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 201699

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13 R1 INSERT 23

16

0 20

3

4

5

2

1

0

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016100

INSERT 23

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13 R1 INSERT 23

16
R2

0 20

3

4

5

2

1

0

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016101

INSERT 23

INSERT 23

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13 R1 INSERT 23

16
R3

R2

0 20

3

4

5

2

1

0

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016102

INSERT 23

INSERT 23

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13 R1 INSERT 23

16
R3

R2

0 20

Use R2 for inserting 23 because it maps 23
to least full secondary bucket candidate.

3

4

5

2

1

0

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016103

INSERT 23

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16
R2

0 20

Use R2 for inserting 23 because it maps 23
to least full secondary bucket candidate.

3

4

5

2

1

0

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016104

INSERT 23

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16
R223

0 20

Use R2 for inserting 23 because it maps 23
to least full secondary bucket candidate.

3

4

5

2

1

0

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016105

INSERT 23

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16
R223

0 20

Use R2 for inserting 23 because it maps 23
to least full secondary bucket candidate.

3

4

5

2

1

0

Compute index into remap entry array
using Htag with key as input

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016106

INSERT 23

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16
R223

Htag(23) = 17
0 20

Use R2 for inserting 23 because it maps 23
to least full secondary bucket candidate.

3

4

5

2

1

0

Compute index into remap entry array
using Htag with key as input

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016107

INSERT 23

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16
R223

Htag(23) = 17
0 20

Use R2 for inserting 23 because it maps 23
to least full secondary bucket candidate.

3

4

5

2

1

0

Compute index into remap entry array
using Htag with key as input
Store 2 at index Htag(23)=17 to indicate
that R2 was used to remap 23

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016108

INSERT 23

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16
R223

Htag(23) = 17
0 20

Use R2 for inserting 23 because it maps 23
to least full secondary bucket candidate.

3

4

5

2

1

0

Compute index into remap entry array
using Htag with key as input
Store 2 at index Htag(23)=17 to indicate
that R2 was used to remap 23

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016109

INSERT 23

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16
R223

Htag(23) = 17
0 20

Use R2 for inserting 23 because it maps 23
to least full secondary bucket candidate.

3

4

5

2

1

0

2

Compute index into remap entry array
using Htag with key as input
Store 2 at index Htag(23)=17 to indicate
that R2 was used to remap 23

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016110

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16
23

0 20

3

4

5

2

1

0

2

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016111

16 now also needs to be remapped to a

secondary bucket.

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16
23

0 20

3

4

5

2

1

0

2

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016112

16 now also needs to be remapped to a

secondary bucket.

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16
23

0 20

3

4

5

2

1

0

2

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016113

16 now also needs to be remapped to a

secondary bucket.

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16
R123

0 20

3

4

5

2

1

0

2

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016114

16 now also needs to be remapped to a

secondary bucket.

INSERT 16

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

R2
16

R123

0 20

3

4

5

2

1

0

2

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016115

16 now also needs to be remapped to a

secondary bucket.

INSERT 16

INSERT 16

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

R2
16

R3

R123

0 20

3

4

5

2

1

0

2

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016116

16 now also needs to be remapped to a

secondary bucket.

INSERT 16

INSERT 16

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

R2
16

R3

R123

0 20

Use R3 for inserting 16 because it maps 16
to least full secondary bucket candidate.

3

4

5

2

1

0

2

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016117

16 now also needs to be remapped to a

secondary bucket.

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16

R3

23

0 20

Use R3 for inserting 16 because it maps 16
to least full secondary bucket candidate.

3

4

5

2

1

0

2

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016118

16 now also needs to be remapped to a

secondary bucket.

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16

R3

23

0 20

Use R3 for inserting 16 because it maps 16
to least full secondary bucket candidate.

3

4

5

2

1

0

2

16

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016119

16 now also needs to be remapped to a

secondary bucket.

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16

R3

23

0 20

Use R3 for inserting 16 because it maps 16
to least full secondary bucket candidate.

3

4

5

2

1

0

2

Compute index into remap entry array
using Htag with key as input

16

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016120

16 now also needs to be remapped to a

secondary bucket.

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16

R3

23

Htag(16) = 1
0 20

Use R3 for inserting 16 because it maps 16
to least full secondary bucket candidate.

3

4

5

2

1

0

2

Compute index into remap entry array
using Htag with key as input

16

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016121

16 now also needs to be remapped to a

secondary bucket.

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16

R3

23

Htag(16) = 1
0 20

Use R3 for inserting 16 because it maps 16
to least full secondary bucket candidate.

3

4

5

2

1

0

2

Compute index into remap entry array
using Htag with key as input

16

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016122

16 now also needs to be remapped to a

secondary bucket.

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16

R3

23

Htag(16) = 1
0 20

Use R3 for inserting 16 because it maps 16
to least full secondary bucket candidate.

3

4

5

2

1

0

2

Compute index into remap entry array
using Htag with key as input
Store 3 at index Htag(16)=1 to indicate
that R3 was used to remap 16

16

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016123

16 now also needs to be remapped to a

secondary bucket.

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16

R3

23

Htag(16) = 1
0 20

Use R3 for inserting 16 because it maps 16
to least full secondary bucket candidate.

3

4

5

2

1

0

2

Compute index into remap entry array
using Htag with key as input
Store 3 at index Htag(16)=1 to indicate
that R3 was used to remap 16

16

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016124

16 now also needs to be remapped to a

secondary bucket.

INSERT 16

HORTON TABLES

 For buckets that overflow, we remap surplus elements using one of many secondary
hash functions and register its numerical identifier (e.g., R2, R5, R7) as an element in a
remap entry array (REA), a sparse, in-bucket array that tracks remapped elements.

INSERTS THAT TRIGGER CREATION OF REMAP ENTRY ARRAY

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

16

R3

23

Htag(16) = 1
0 20

Use R3 for inserting 16 because it maps 16
to least full secondary bucket candidate.

3

4

5

2

1

0

2

Compute index into remap entry array
using Htag with key as input
Store 3 at index Htag(16)=1 to indicate
that R3 was used to remap 16

16

3

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016125

HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary
bucket). We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016126

HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary
bucket). We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

Compute primary hash function and
examine primary bucket (bucket 2)

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016127

HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary
bucket). We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

LOOKUP 16Hprimary

Compute primary hash function and
examine primary bucket (bucket 2)

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016128

HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary
bucket). We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

LOOKUP 16Hprimary

Compute primary hash function and
examine primary bucket (bucket 2)
Determine 16 is not stored in its primary
bucket and proceed to examine REA

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016129

HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary
bucket). We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

0 20

3

4

5

2

1

0

2

16

3

Determine 16 is not stored in its primary
bucket and proceed to examine REA

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016130

HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary
bucket). We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

0 20

3

4

5

2

1

0

2

16

3

Determine 16 is not stored in its primary
bucket and proceed to examine REA

Compute index into remap entry array
using Htag with key as input

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016131

HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary
bucket). We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

Htag(16) = 1
0 20

3

4

5

2

1

0

2

16

3

Determine 16 is not stored in its primary
bucket and proceed to examine REA

Compute index into remap entry array
using Htag with key as input

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016132

HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary
bucket). We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

Htag(16) = 1
0 20

3

4

5

2

1

0

2

16

3

Determine 16 is not stored in its primary
bucket and proceed to examine REA

Compute index into remap entry array
using Htag with key as input

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016133

HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary
bucket). We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

Htag(16) = 1
0 20

3

4

5

2

1

0

2

16

3

Determine 16 is not stored in its primary
bucket and proceed to examine REA

Compute index into remap entry array
using Htag with key as input
The remap entry shows R3 was used to
remap 16, so compute R3(16).

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016134

LOOKUP 16

HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary
bucket). We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

R3

23

Htag(16) = 1
0 20

3

4

5

2

1

0

2

16

3

Determine 16 is not stored in its primary
bucket and proceed to examine REA

Compute index into remap entry array
using Htag with key as input
The remap entry shows R3 was used to
remap 16, so compute R3(16).

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016135

LOOKUP 16

HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary
bucket). We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

R3

23

Htag(16) = 1
0 20

3

4

5

2

1

0

2

16

3

Determine 16 is not stored in its primary
bucket and proceed to examine REA

Compute index into remap entry array
using Htag with key as input
The remap entry shows R3 was used to
remap 16, so compute R3(16).

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016136

LOOKUP 16

HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary
bucket). We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

R3

23

Htag(16) = 1
0 20

3

4

5

2

1

0

2

16

3

Determine 16 is not stored in its primary
bucket and proceed to examine REA

Compute index into remap entry array
using Htag with key as input
The remap entry shows R3 was used to
remap 16, so compute R3(16).

Retrieve 16 from bucket 3

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016137

LOOKUP 16

HORTON TABLES

 Remapped items can always be retrieved by accessing 2 buckets, even when many
secondary hash functions are used

 e.g., when retrieving 16, we only access buckets 2 (primary bucket) and 3 (secondary
bucket). We skip buckets 4 and 5 even though they were previously candidates.

RETRIEVING REMAPPED ITEMS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

R3

23

Htag(16) = 1
0 20

3

4

5

2

1

0

2

16

3

Determine 16 is not stored in its primary
bucket and proceed to examine REA

Compute index into remap entry array
using Htag with key as input
The remap entry shows R3 was used to
remap 16, so compute R3(16).

Retrieve 16 from bucket 3

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016138

HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016139

HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

Most negative lookups only
require accessing a single bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016140

HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16 LOOKUP 25

Most negative lookups only
require accessing a single bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016141

HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16 LOOKUP 25Hprimary

Most negative lookups only
require accessing a single bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016142

HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16 LOOKUP 25Hprimary

Most negative lookups only
require accessing a single bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016143

HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16 LOOKUP 25Hprimary

Most negative lookups only
require accessing a single bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016144

HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16 LOOKUP 25Hprimary

Most negative lookups only
require accessing a single bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016145

HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16 LOOKUP 25Hprimary

Most negative lookups only
require accessing a single bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016146

HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16 LOOKUP 25Hprimary

 Lookups where the primary bucket is Type A, a conventional BCHT bucket without
remap entries, only ever require examining 1 bucket and thus 1 cache line for
positive and negative queries alike

Most negative lookups only
require accessing a single bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016147

HORTON TABLES

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

Most negative lookups only
require accessing a single bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016148

HORTON TABLES

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

LOOKUP 28

Most negative lookups only
require accessing a single bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016149

HORTON TABLES

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

LOOKUP 28Hprimary

Most negative lookups only
require accessing a single bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016150

HORTON TABLES

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

LOOKUP 28Hprimary

Most negative lookups only
require accessing a single bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016151

HORTON TABLES

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

LOOKUP 28Hprimary

Most negative lookups only
require accessing a single bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016152

HORTON TABLES

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

LOOKUP 28Hprimary

Most negative lookups only
require accessing a single bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016153

HORTON TABLES

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

LOOKUP 28Hprimary

Most negative lookups only
require accessing a single bucket

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016154

Most negative lookups only
require accessing a single bucket

HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

0 20

3

4

5

2

1

0

2

16

3

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016155

Most negative lookups only
require accessing a single bucket

HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

0 20

3

4

5

2

1

0

2

16

3

Determine 28 is not stored in its primary
bucket (2) and proceed to examine REA

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016156

Most negative lookups only
require accessing a single bucket

HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

0 20

3

4

5

2

1

0

2

16

3

Determine 28 is not stored in its primary
bucket (2) and proceed to examine REA
Compute index into remap entry array
using Htag with key as input

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016157

Most negative lookups only
require accessing a single bucket

HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

Htag(28) = 10
0 20

3

4

5

2

1

0

2

16

3

Determine 28 is not stored in its primary
bucket (2) and proceed to examine REA
Compute index into remap entry array
using Htag with key as input

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016158

Most negative lookups only
require accessing a single bucket

HORTON TABLES
NEGATIVE LOOKUPS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

Htag(28) = 10
0 20

3

4

5

2

1

0

2

16

3

Determine 28 is not stored in its primary
bucket (2) and proceed to examine REA
Compute index into remap entry array
using Htag with key as input
Examine 10th slot of remap entry array
and see it is empty. The search can stop.

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016159

Negative lookups only require
accessing 2 buckets on a tag alias

HORTON TABLES
NEGATIVE LOOKUPS WITH TAG ALIAS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016160

Negative lookups only require
accessing 2 buckets on a tag alias

HORTON TABLES
NEGATIVE LOOKUPS WITH TAG ALIAS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

LOOKUP 7

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016161

Negative lookups only require
accessing 2 buckets on a tag alias

HORTON TABLES
NEGATIVE LOOKUPS WITH TAG ALIAS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

LOOKUP 7Hprimary

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016162

Negative lookups only require
accessing 2 buckets on a tag alias

HORTON TABLES
NEGATIVE LOOKUPS WITH TAG ALIAS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

LOOKUP 7Hprimary

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016163

Negative lookups only require
accessing 2 buckets on a tag alias

HORTON TABLES
NEGATIVE LOOKUPS WITH TAG ALIAS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

LOOKUP 7Hprimary

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016164

Negative lookups only require
accessing 2 buckets on a tag alias

HORTON TABLES
NEGATIVE LOOKUPS WITH TAG ALIAS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

LOOKUP 7Hprimary

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016165

Negative lookups only require
accessing 2 buckets on a tag alias

HORTON TABLES
NEGATIVE LOOKUPS WITH TAG ALIAS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

LOOKUP 7Hprimary

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016166

Negative lookups only require
accessing 2 buckets on a tag alias

HORTON TABLES
NEGATIVE LOOKUPS WITH TAG ALIAS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

Determine 7 is not stored in its primary
bucket (2) and proceed to examine REA

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

LOOKUP 7Hprimary

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016167

Negative lookup with a tag alias
(e.g., 7 reads remap entry set by 23)

HORTON TABLES
NEGATIVE LOOKUPS WITH TAG ALIAS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA

EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

0 20

3

4

5

2

1

0

2

16

3

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016168

Negative lookup with a tag alias
(e.g., 7 reads remap entry set by 23)

HORTON TABLES
NEGATIVE LOOKUPS WITH TAG ALIAS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA

EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

0 20

3

4

5

2

1

0

2

16

3

Compute index into remap entry array
using Htag with key as input

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016169

Negative lookup with a tag alias
(e.g., 7 reads remap entry set by 23)

HORTON TABLES
NEGATIVE LOOKUPS WITH TAG ALIAS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA

EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

Htag(7) = 17
0 20

3

4

5

2

1

0

2

16

3

Compute index into remap entry array
using Htag with key as input

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016170

Negative lookup with a tag alias
(e.g., 7 reads remap entry set by 23)

HORTON TABLES
NEGATIVE LOOKUPS WITH TAG ALIAS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA

EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

Htag(7) = 17
0 20

3

4

5

2

1

0

2

16

3

Compute index into remap entry array
using Htag with key as input

Examine 18th slot of remap entry array and
see that R2 was likely used to remap 7.

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016171

Negative lookup with a tag alias
(e.g., 7 reads remap entry set by 23)

HORTON TABLES
NEGATIVE LOOKUPS WITH TAG ALIAS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA

EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

Htag(7) = 17
0 20

3

4

5

2

1

0

2

16

3

Compute index into remap entry array
using Htag with key as input

Examine 18th slot of remap entry array and
see that R2 was likely used to remap 7.

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

LOOKUP 7

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016172

Negative lookup with a tag alias
(e.g., 7 reads remap entry set by 23)

HORTON TABLES
NEGATIVE LOOKUPS WITH TAG ALIAS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA

EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

Htag(7) = 17
0 20

3

4

5

2

1

0

2

16

3

Compute index into remap entry array
using Htag with key as input

Examine 18th slot of remap entry array and
see that R2 was likely used to remap 7.

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

LOOKUP 7R2

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016173

Negative lookup with a tag alias
(e.g., 7 reads remap entry set by 23)

HORTON TABLES
NEGATIVE LOOKUPS WITH TAG ALIAS

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA

EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

Htag(7) = 17
0 20

3

4

5

2

1

0

2

16

3

Compute index into remap entry array
using Htag with key as input

Examine 18th slot of remap entry array and
see that R2 was likely used to remap 7.

 Lookups where the primary bucket is Type B, buckets where the final slot is
converted into an REA, often only require accessing 1 bucket and at most 2 for
positive and negative queries alike

LOOKUP 7R2

Determine that no slots of secondary
bucket (0) match 7, so stop looking.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016174

ADDITIONAL CONTENT IN THE PAPER

 Sharing of remap entries among multiple remapped elements while still
permitting their deletion

 Further optimizations for improving lookup throughput

 Analytical models for lookups, insertions and deletions

 More in-depth discussion of prior work and how Horton tables improves over
first-fit for positive lookups

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016175

EXPERIMENTAL METHODOLOGY

 Conducted a series of analytical studies to determine 8-slots per bucket was a
good design point (more details in paper)

‒ Fills a 64-byte cache line with 8-byte entries

‒ High load factors (>95% table can be filled with key-value pairs)

‒ Positive lookups that typically access less than 1.18 buckets per query

‒ Negative lookups that typically access less than 1.06 buckets per query

 Further analytical studies demonstrated that 21 entries per REA and 7
secondary functions is often more than sufficient for 8-slot buckets (more
details in paper)

 Experimental studies conducted on an AMD RadeonTM R9 290X GPU

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016176

RESULTS
POSITIVE
LOOKUPS

Bytes Transferred from DRAM per Query

Positive Lookup Throughput

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016177

RESULTS
POSITIVE
LOOKUPS

Bytes Transferred from DRAM per Query

Positive Lookup Throughput

HIGHER IS
BETTER

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016178

RESULTS
POSITIVE
LOOKUPS

Bytes Transferred from DRAM per Query

Positive Lookup Throughput

HIGHER IS
BETTER

LOWER

IS BETTER

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016179

RESULTS
POSITIVE
LOOKUPS

Bytes Transferred from DRAM per Query

Positive Lookup Throughput

HIGHER IS
BETTER

LOWER

IS BETTER

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016180

RESULTS
POSITIVE
LOOKUPS

Bytes Transferred from DRAM per Query

Positive Lookup Throughput

HIGHER IS
BETTER

LOWER

IS BETTER

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016181

RESULTS
POSITIVE
LOOKUPS

Bytes Transferred from DRAM per Query

Positive Lookup Throughput

HIGHER IS
BETTER

LOWER

IS BETTER

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016182

RESULTS
POSITIVE
LOOKUPS

Bytes Transferred from DRAM per Query

Positive Lookup Throughput

HIGHER IS
BETTER

LOWER

IS BETTER

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016183

RESULTS
POSITIVE
LOOKUPS

Bytes Transferred from DRAM per Query

Positive Lookup Throughput

HIGHER IS
BETTER

LOWER

IS BETTER

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016184

RESULTS
POSITIVE
LOOKUPS

Bytes Transferred from DRAM per Query

Positive Lookup Throughput

HIGHER IS
BETTER

LOWER

IS BETTER

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016185

RESULTS
NEGATIVE
LOOKUPS

Bytes Transferred from DRAM per Query

Negative Lookup Throughput

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016186

RESULTS
NEGATIVE
LOOKUPS

Bytes Transferred from DRAM per Query

Negative Lookup Throughput

HIGHER IS
BETTER

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016187

RESULTS
NEGATIVE
LOOKUPS

Bytes Transferred from DRAM per Query

Negative Lookup Throughput

HIGHER IS
BETTER

LOWER

IS BETTER

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016188

RESULTS
NEGATIVE
LOOKUPS

Bytes Transferred from DRAM per Query

Negative Lookup Throughput

HIGHER IS
BETTER

LOWER

IS BETTER

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016189

RESULTS
NEGATIVE
LOOKUPS

Bytes Transferred from DRAM per Query

Negative Lookup Throughput

HIGHER IS
BETTER

LOWER

IS BETTER

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016190

RESULTS
NEGATIVE
LOOKUPS

Bytes Transferred from DRAM per Query

Negative Lookup Throughput

HIGHER IS
BETTER

LOWER

IS BETTER

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016191

RESULTS
NEGATIVE
LOOKUPS

Bytes Transferred from DRAM per Query

Negative Lookup Throughput

HIGHER IS
BETTER

LOWER

IS BETTER

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016192

RESULTS
NEGATIVE
LOOKUPS

Bytes Transferred from DRAM per Query

Negative Lookup Throughput

HIGHER IS
BETTER

LOWER

IS BETTER

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016193

RESULTS
NEGATIVE
LOOKUPS

Bytes Transferred from DRAM per Query

Negative Lookup Throughput

HIGHER IS
BETTER

LOWER

IS BETTER

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016194

CONCLUSIONS FROM HORTON TABLES

 Achieves lookup throughput that meets or exceeds prior approaches

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016195

CONCLUSIONS FROM HORTON TABLES

 Achieves lookup throughput that meets or exceeds prior approaches

 Throughput improvement is achieved by reducing the number of cache lines
that need to be accessed per lookup query to at most 1.18 for positive lookups
and 1.06 for negative lookups

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016196

CONCLUSIONS FROM HORTON TABLES

 Achieves lookup throughput that meets or exceeds prior approaches

 Throughput improvement is achieved by reducing the number of cache lines
that need to be accessed per lookup query to at most 1.18 for positive lookups
and 1.06 for negative lookups

 Reducing cache accesses yields corresponding throughput improvements of
5% to 35% and 73% to 89%, for pos. and neg. lookups, respectively, on a very
full table.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016197

CONCLUSIONS FROM HORTON TABLES

 Achieves lookup throughput that meets or exceeds prior approaches

 Throughput improvement is achieved by reducing the number of cache lines
that need to be accessed per lookup query to at most 1.18 for positive lookups
and 1.06 for negative lookups

 Reducing cache accesses yields corresponding throughput improvements of
5% to 35% and 73% to 89%, for pos. and neg. lookups, respectively, on a very
full table.

 Optimizing hash table algorithms is important because of their wide use
throughout all segments of computing

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016198

CONCLUSIONS FROM HORTON TABLES

 Achieves lookup throughput that meets or exceeds prior approaches

 Throughput improvement is achieved by reducing the number of cache lines
that need to be accessed per lookup query to at most 1.18 for positive lookups
and 1.06 for negative lookups

 Reducing cache accesses yields corresponding throughput improvements of
5% to 35% and 73% to 89%, for pos. and neg. lookups, respectively, on a very
full table.

 Optimizing hash table algorithms is important because of their wide use
throughout all segments of computing

‒ e.g., scientific computing and databases, data compression, computer graphics and
data visualization

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016199

FUTURE WORK

 Evaluation of insertions and deletions and their optimization

‒ Write- and update-heavy workloads should also benefit from Horton tables approach.

 Application of Horton tables to data warehousing and analysis applications

‒ Database operators’ implementations (e.g., hash joins and grouping hash tables)

‒ Key-value stores

 Additional indices for speeding up lookups, insertions, and deletions

 Evaluation of Horton tables on new and emerging memory subsystems as well
as tailoring the technique for persistent storage technologies such as SSDs

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016200

QUESTIONS?

Thanks for your attention.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016201

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and
typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to
product and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences
between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or
otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to
time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR
ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO
EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM
THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2016 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD Radeon, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes
only and may be trademarks of their respective owners.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016202

BACKUP
SLIDES

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016203

HORTON TABLES

 We permit a single remap entry to reference multiple remapped elements.

 Deleting remap entries is possible by having elements that share remap entries
map to the same secondary bucket (see our paper for details).

SHARING OF REMAP ENTRIES

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016204

HORTON TABLES

 We permit a single remap entry to reference multiple remapped elements.

 Deleting remap entries is possible by having elements that share remap entries
map to the same secondary bucket (see our paper for details).

SHARING OF REMAP ENTRIES

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

INSERT 27

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016205

HORTON TABLES

 We permit a single remap entry to reference multiple remapped elements.

 Deleting remap entries is possible by having elements that share remap entries
map to the same secondary bucket (see our paper for details).

SHARING OF REMAP ENTRIES

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

INSERT 27Hprimary

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016206

HORTON TABLES

 We permit a single remap entry to reference multiple remapped elements.

 Deleting remap entries is possible by having elements that share remap entries
map to the same secondary bucket (see our paper for details).

SHARING OF REMAP ENTRIES

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

INSERT 27Hprimary

We conclude that bucket 2 has no free
slots, so we need to remap it.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016207

HORTON TABLES

 We permit a single remap entry to reference multiple remapped elements.

 Deleting remap entries is possible by having elements that share remap entries
map to the same secondary bucket (see our paper for details).

SHARING OF REMAP ENTRIES

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

0 20

23

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016208

HORTON TABLES

 We permit a single remap entry to reference multiple remapped elements.

 Deleting remap entries is possible by having elements that share remap entries
map to the same secondary bucket (see our paper for details).

SHARING OF REMAP ENTRIES

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

0 20

23

Compute the Htag on the key

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016209

HORTON TABLES

 We permit a single remap entry to reference multiple remapped elements.

 Deleting remap entries is possible by having elements that share remap entries
map to the same secondary bucket (see our paper for details).

SHARING OF REMAP ENTRIES

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

Htag(27) = 1
0 20

23

Compute the Htag on the key

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016210

HORTON TABLES

 We permit a single remap entry to reference multiple remapped elements.

 Deleting remap entries is possible by having elements that share remap entries
map to the same secondary bucket (see our paper for details).

SHARING OF REMAP ENTRIES

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

Htag(27) = 1
0 20

23

Compute the Htag on the key

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016211

HORTON TABLES

 We permit a single remap entry to reference multiple remapped elements.

 Deleting remap entries is possible by having elements that share remap entries
map to the same secondary bucket (see our paper for details).

SHARING OF REMAP ENTRIES

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

Htag(27) = 1
0 20

23

Compute the Htag on the key
We see that the remap entry is set,

so we try to use R3 to insert 27.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016212

HORTON TABLES

 We permit a single remap entry to reference multiple remapped elements.

 Deleting remap entries is possible by having elements that share remap entries
map to the same secondary bucket (see our paper for details).

SHARING OF REMAP ENTRIES

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

Htag(27) = 1
0 20

23

Compute the Htag on the key
We see that the remap entry is set,

so we try to use R3 to insert 27.

INSERT 27

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016213

HORTON TABLES

 We permit a single remap entry to reference multiple remapped elements.

 Deleting remap entries is possible by having elements that share remap entries
map to the same secondary bucket (see our paper for details).

SHARING OF REMAP ENTRIES

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

Htag(27) = 1
0 20

23

Compute the Htag on the key
We see that the remap entry is set,

so we try to use R3 to insert 27.

INSERT 27R3

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016214

HORTON TABLES

 We permit a single remap entry to reference multiple remapped elements.

 Deleting remap entries is possible by having elements that share remap entries
map to the same secondary bucket (see our paper for details).

SHARING OF REMAP ENTRIES

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

Htag(27) = 1
0 20

23

Compute the Htag on the key
We see that the remap entry is set,

so we try to use R3 to insert 27.

INSERT 27R3
27

The insertion succeeds because the
secondary bucket (3) has a free slot.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016215

HORTON TABLES
SHARING OF REMAP ENTRIES

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

Htag(27) = 1
0 20

23

Compute the Htag on the key
We see that the remap entry is set,

so we try to use R3 to insert 27.

INSERT 27R3
27

The insertion succeeds because the
secondary bucket (3) has a free slot.

 If bucket 3 had been full, we could have swapped 27 with another item from
27’s primary bucket (2) (e.g., 35) and remapped that item instead.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016216

HORTON TABLES
SHARING OF REMAP ENTRIES

8 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

Htag(27) = 1
0 20

23

Compute the Htag on the key
We see that the remap entry is set,

so we try to use R3 to insert 27.

INSERT 27R3
27

The insertion succeeds because the
secondary bucket (3) has a free slot.

 If bucket 3 had been full, we could have swapped 27 with another item from
27’s primary bucket (2) (e.g., 35) and remapped that item instead.

 Alternatively, we could try to remap both 27 and 16 to another shared bucket
with a different secondary hash function, but this is more likely to fail.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016217

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

1627

8

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016218

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

DELETE 8

27

8

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016219

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

DELETE 8Hprimary

27

8

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016220

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

DELETE 8Hprimary

27

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016221

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

1627

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016222

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

1627

DELETE 27

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016223

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

1627

DELETE 27Hprimary

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016224

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

1627

DELETE 27Hprimary

27 is not found in its primary bucket; we
need to access the remap entry array.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016225

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

1627

8

0 20

23

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016226

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

1627

0 20

23

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016227

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

1627

27 is not found in its primary bucket; we
need to access the remap entry array.

0 20

23

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016228

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

1627

27 is not found in its primary bucket; we
need to access the remap entry array.

Htag(27) = 1
0 20

23

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016229

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

1627

27 is not found in its primary bucket; we
need to access the remap entry array.

Htag(27) = 1
0 20

23

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016230

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

1627

27 is not found in its primary bucket; we
need to access the remap entry array.

Htag(27) = 1
0 20

23

DELETE 27

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016231

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

1627

27 is not found in its primary bucket; we
need to access the remap entry array.

Htag(27) = 1
0 20

23

DELETE 27R3

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016232

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

1627

27 is not found in its primary bucket; we
need to access the remap entry array.

Htag(27) = 1
0 20

23

DELETE 27R3

Search R3(27) = 3 and delete it upon
discovery.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016233

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

27 is not found in its primary bucket; we
need to access the remap entry array.

Htag(27) = 1
0 20

23

DELETE 27R3

Search R3(27) = 3 and delete it upon
discovery.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016234

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

27 is not found in its primary bucket; we
need to access the remap entry array.

Htag(27) = 1
0 20

23

DELETE 27R3

Search R3(27) = 3 and delete it upon
discovery.
Compute Hprimary on 16 and 37 and find
that the remap entry is still active.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016235

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

16

27 is not found in its primary bucket; we
need to access the remap entry array.

Htag(27) = 1
0 20

23

DELETE 27R3

Search R3(27) = 3 and delete it upon
discovery.
Compute Hprimary on 16 and 37 and find
that the remap entry is still active.
A subsequent deletion of 16 would cause
the remap entry to be deleted.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016236

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

27 is not found in its primary bucket; we
need to access the remap entry array.

Htag(27) = 1
0 20

23

DELETE 27R3

Search R3(27) = 3 and delete it upon
discovery.
Compute Hprimary on 16 and 37 and find
that the remap entry is still active.
A subsequent deletion of 16 would cause
the remap entry to be deleted.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016237

HORTON TABLES

 Deleting elements that are found in their primary bucket only requires
accessing a single bucket

 A remapped element can be deleted by performing a secondary lookup
followed by a deletion

DELETING ELEMENTS

EMPTY 5 EMPTY EMPTY

33 EMPTY 15 2

35 18 22 REA
EMPTY EMPTY EMPTY 37

17 6 21 EMPTY

9 24 EMPTY EMPTY

13

23

3

4

5

2

1

0

27 is not found in its primary bucket; we
need to access the remap entry array.

Htag(27) = 1
0 20

2

DELETE 27R3

Search R3(27) = 3 and delete it upon
discovery.
Compute Hprimary on 16 and 37 and find
that the remap entry is still active.
A subsequent deletion of 16 would cause
the remap entry to be deleted.

| HORTON TABLES: FAST HASH TABLES FOR IN-MEMORY DATA-INTENSIVE COMPUTING | JUNE 23, 2016238

END OF
BACKUP
SLIDES

