Sampling Dynamic Dataflow
Analyses

Joseph L. Greathouse
Advanced Computer Architecture Laboratory
University of Michigan

UNIVERSITY OF MICHIGAN University of British Columbia |==
June 10, 2011

Software Errors Abound

NIST: SW errors cost U.S. ~$60 billion/year as of 2002

UNIVERSITY OF MICHIGAN 2

A problem has been detected and windows has been shut down to prevent damage
Lo your cComputer.

The problem seems to be caused by the following file: SPCMDCON. S¥S
PAGE_FALLT_IM_MNOMPASED_AREA

If thiz 9= the first time wou'wve seen this Stop error sCreen,
restart your computer., If this screen appears again, follow
thesze steps:

Check to make sure any new hardware or software is properly installed.
If thiz 4= a new installation, ask wour hardware or szoftware manufacturer
for any windows updates wou might need.

If problems continue, disable or remove any newly installed hardware
ar software. Disable BIOS memory options such as caching or shadowing.
If wou need to use safe mode to remove or diszable components, restart
yOur Ccomputer, press F8 Lo select advanced startup options, and then
zelect safe mode.

Technical information:

W STOP: Ox00000050 (OxFD3094C2, Ox00000001, OxFEFEZGLY, 0x000000007)

WH¥W SPCMDCON. 5¥5 - Address FBFEVELY base at FEBFESOQQO, Datestamp sdadde?c

Software Errors Abound

NIST: SW errors cost U.S. ~$60 billion/year as of 2002

vy the following

UNIVERSITY OF MICHIGAN 4

Software Errors Abound

NIST: SW errors cost U.S. ~$60 billion/year as of 2002
FBI CCS: Security Issues $67 billion/year as of 2005

o >V from viruses, network intrusion, etc.

vy the following

UNIVERSITY OF MICHIGAN 5

Software Errors Abound

NIST: SW errors cost U.S. ~$60 billion/year as of 2002
FBI CCS: Security Issues $67 billion/year as of 2005

o >V from viruses, network intrusion, etc.

/ CERT-Cataloged Vulnerabilities
9,000 |
6,000 f
0 - l
\ 2000 2001 2002 2003 2004 2005 2006 2007 2008
(proj.)

UNIVERSITY OF MICHIGAN 6

Security Vulnerability Example

= Buffer overflows a large class of security
vulnerabilities

void foo() Return address
{

int local_variables;

int buffer[256]; Local variables

buffer = read_input();

return;

}

4 1=jngd

UNIVERSITY OF MICHIGAN

Security Vulnerability Example

= Buffer overflows a large class of security
vulnerabilities

void foo() Return address
{

int local_variables;

int buffer[256]; Local variables

buffer = read_input();

return;

}

4 1=jngd

If read_input() reads 200 ints

UNIVERSITY OF MICHIGAN

Security Vulnerability Example

= Buffer overflows a large class of security
vulnerabilities

void foo() New Return address
{

int local_variables;

int buffer[256]; Bad Local variables

buffer = read_input();

return;

}

4 1=jngd

If read_input() reads >256 ints

UNIVERSITY OF MICHIGAN

Concurrency Bugs Also Matter
Thread 1 Thread 2

mylen=small mylen=large

Nov. 2010 OpenSSL Security Flaw

If(ptr == NULL) {
en=thread_local->mylen,;
ptr=malloc(len);
memcpy(ptr, data, len);

}

UNIVERSITY OF MICHIGAN 10

TIME

Concurrency Bugs Matter NOW

Thread 1

mylen=small

If(ptr==NULL)

Thread 2

mylen=large

If(ptr==NULL)

len2=thread_local->mylen;

lenl=thread_local->mylen;

ptr=malloc(lenl);

memcpy(ptr, datal, lenl)

ptr=malloc(len2);

UNIVERSITY OF MICHIGAN

pt
0

memcpy(ptr, data2, len2)

I

11

TIME

Concurrency Bugs Matter NOW

Thread 1

mylen=small

Thread 2

mylen=large

If(ptr==NULL)

len2=thread_local->mylen;

lenl=thread_local->mylen;

ptr=malloc(lenl);

memcpy(ptr, datal, lenl)

ptr=malloc(len2);

UNIVERSITY OF MICHIGAN

pt
0

memcpy(ptr, data2, len2)

I

12

TIME

Concurrency Bugs
Thread 1

mylen=small

Matter NOW

Thread 2

mylen=large

- lifpr==NuLy |

len2=thread_local->mylen;

ptr=malloc(len2);

lenl=thread_local->mylen;

ptr=malloc(lenl);

memcpy(ptr, datal, lenl)

UNIVERSITY OF MICHIGAN

memcpy(ptr, data2, len2)
ptr
")

13

‘ Concurrency Bugs Matter NOW

TIME

Thread 1

mylen=small

Thread 2

mylen=large

lenl=thread_local->mylen;

ptr=malloc(lenl);

memcpy(ptr, datal, lenl)

memcpy(ptr, data2, len2)

.

UNIVERSITY OF MICHIGAN

14

‘ Concurrency Bugs Matter NOW

TIME

Thread 1

mylen=small

memcpy(ptr, datal, lenl)

Thread 2

mylen=large

memcpy(ptr, data2, len2)

T (e

UNIVERSITY OF MICHIGAN

15

‘ Concurrency Bugs Matter NOW

TIME

Thread 1

mylen=small

-

Thread 2

mylen=large

memcpy(ptr, data2, len2)

lllllll"""" ptr []
LEAKED

UNIVERSITY OF MICHIGAN

16

‘ Concurrency Bugs Matter NOW

Thread 1 Thread 2

mylen small mylen=large

ptr []
LEAKED

TIME

UNIVERSITY OF MICHIGAN

17

‘ Concurrency Bugs Matter NOW

Thread 1 Thread 2

mylen small mylen=large

ptr []
LEAKED

TIME

UNIVERSITY OF MICHIGAN

18

One Layer of a Solution

High quality dynamic software analysis
o Find difficult bugs that other analyses miss

Distribute Tests to Large Populations
o Low overhead or users get angry

Accomplished by sampling the analyses
o Each user only tests part of the program

UNIVERSITY OF MICHIGAN

19

Dynamic Datatlow Analysis
Assoclate meta-data with program values
Propagate/Clear meta-data while executing
Check meta-data for safety & correctness

Forms dataflows of meta/shadow information

UNIVERSITY OF MICHIGAN 20

Example Dynamic Datatlow Analysis

o

Data L

Input

|

Meta-data

UNIVERSITY OF MICHIGAN

21

Example Dynamic Datatlow Analysis

O Data L Input }

Meta-data H

[X = read_input() }

UNIVERSITY OF MICHIGAN

Example Dynamic Datatlow Analysis

O Data L Ihput }

Meta-data
| % Associate

X = read_input() }

N

UNIVERSITY OF MICHIGAN

Example Dynamic Datatlow Analysis

o

Data L Input

|

Meta-data n ‘

X = read_input()

Propaqate> ‘ ‘

y X * 1024}

UNIVERSITY OF MICHIGAN

24

‘ Example Dynamic Datatlow Analysis
| | Data [\npu J

v

X = read_input()

UNIVERSITY OF MICHIGAN 25

Example Dynamic Datatlow Analysis

:% validate(x)< Clear

O Data L Input }
Meta-data | ‘
X = read_input()
N | ‘ ‘),
y = x * 1024 }
Ve
a+=y z=y*75 }
N _ N ~

UNIVERSITY OF MICHIGAN

26

Example Dynamic Datatlow Analysis

O Data L Input }

Meta-data ‘

X = read_input()) validate(x) }

I 1

.XZX*HR4} PN:X+42}

/)|
a+=y j/z:y*75 }
N - N -

UNIVERSITY OF MICHIGAN

‘ Example Dynamic Datatlow Analysis
|] Data [Input J

Lﬂ‘;ﬂ‘w:{ validate(x)

_

UNIVERSITY OF MICHIGAN 28

‘ Example Dynamic Datatlow Analysis
D Data [Input J

x=read_input() :;Evalidate(x)}

UNIVERSITY OF MICHIGAN 29

Distributed Dynamic Dataflow Analysis

= Split analysis across large populations
o Observe more runtime states
o Report problems developer never thought to test

UNIVERSITY OF MICHIGAN 30

Distributed Dynamic Dataflow Analysis

= Split analysis across large populations
o Observe more runtime states
o Report problems developer never thought to test

ooooooooo

Instfﬁﬁ{énted
Program

UNIVERSITY OF MICHIGAN 31

Distributed Dynamic Dataflow Analysis

= Split analysis across large populations
o Observe more runtime states
o Report problems developer never thought to test

UNIVERSITY OF MICHIGAN 32

Distributed Dynamic Dataflow Analysis

= Split analysis across large populations
o Observe more runtime states
o Report problems developer never thought to test

. ' P]
Potential me) !
problems =

UNIVERSITY OF MICHIGAN

33

Distributed Dynamic Dataflow Analysis

= Split analysis across large populations
o Observe more runtime states
o Report problems developer never thought to test

UNIVERSITY OF MICHIGAN 34

Distributed Dynamic Dataflow Analysis

= Split analysis across large populations
o Observe more runtime states
o Report problems developer never thought to test

UNIVERSITY OF MICHIGAN 35

Distributed Dynamic Dataflow Analysis

= Split analysis across large populations

o Observe more runtime states
o Report problems developer never thought to test

’F SomeProgram

SomeProgram has encountered a problem and needs to close. We are somy
for the inconvenience.

if you were in the middle of something, the information you were working on might be: lost.

Please tell Microsoft about this problem.
We have created an emor report that you can send to help us improve SomeProgram. We
will treat this report as corfidential and anorymous.

What data does this emor report contain?

Why should | report to Microsoft 7

Debug

36

UNIVERSITY OF MICHIGAN

Problem: DDAs are Slow

Symbolic Execution

10-200x

Data Race Detection

(e.g. Helgrind)

2-300X

Memory Chec
(e.g. Dr. Memory)

KINg

5-50x

UNIVERSITY OF MICHIGAN

Taint Analysis
(e.g.TaintCheck)

2-200x

Dynamic Bounds

Checking 10-80x

FP Accuracy
Verification

100-
500x

37

Our Solution: Sampling

Lower overheads by skipping some analyses

100

~
ol

N
6]

|deal
Detection Accuracy (%)
a1
o

0

NoO
Analysis

UNIVERSITY OF MICHIGAN

Overhead

Complete
Analysis

38

Our Solution: Sampling

= Lower overheads by skipping some analyses

100

~
(6)

N
6]

deal
Detection Accuracy (%)
o1
o

o

ACCURACY

UNIVERSITY OF MICHIGAN

Overhead

v 2
"y .4\'

e
F'S

ACCURACY

39

‘Sampling Allows Distribution

100

~
(6)

N
ol

Developer

|deal
Detection Accuracy (%)
a1
o

o

me
Overhead <
=

UNIVERSITY OF MICHIGAN 40

‘Sampling Allows Distribution

100

Beta Testers

~
(6)

N
ol

Developer

|deal
Detection Accuracy (%)
a1
o

me
Overhead <
=

o

UNIVERSITY OF MICHIGAN a1

‘ Samphng AHOWS Distribution

Developer

|deal
Detection Accuracy (%)

me

Lo

Overhead

UNIVERSITY OF MICHIGAN 42

Samphng AHOWS Distribution

: = ,[“ [] ' u '] '
End Users || Beta Testers /
75 - LI : :
Many users testing at little
overhead see more errors than |

|deal
Detection Accuracy (%)
a1
o

N one user at high overhead. /T
/ Developer
0 iy, 2

Overhead

i

UNIVERSITY OF MICHIGAN 43

Cannot Naively Sample Code

T

UNIVERSITY OF MICHIGAN

44

‘ Cannot Naively Sample Code

o

A i

X = read_input() ’ I

UNIVERSITY OF MICHIGAN

Cannot Naively Sample Code

[Input }
J
X = read._input() }

N H

y:x*1024}

1
. A L Z=Yy*75 <Skiplnstr.

UNIVERSITY OF MICHIGAN

46

Cannot Naively Sample Code

o

N

= read _input() - J; validate(x) < SKip Instr.
N\

y:x*1024}

P

UNIVERSITY OF MICHIGAN 47

Cannot Naively Sample Code

o

X = read_input() . validate(x)

k T r‘ ‘ o - k v r‘ ‘

y:x*1024} W =X + 42

?

P e

UNIVERSITY OF MICHIGAN

48

‘ Cannot Naively Sample Code

T

¢

X = reaci_input() 3§ validate(x) I

UNIVERSITY OF MICHIGAN 49

‘ Cannot Naively Sample Code

T

¢

X = read_input() 3§ validate(x) I
J J False Positive ‘

[Z=Yy*75 _ False Negative b

UNIVERSITY OF MICHIGAN 50

Our Solution: Sample Data, not Code

Sampling must be aware of meta-data

K
" W

N4 v
v ¥ N
v ¥

Remove meta-data from skipped dataflows
a Prevents false positives

UNIVERSITY OF MICHIGAN

51

Our Solution: Sample Data, not Code

Sampling must be aware of meta-data

¥ \ \
£\ \ \
‘T4 v \’
v 4 N
\’ \’

Remove meta-data from skipped dataflows
a Prevents false positives

UNIVERSITY OF MICHIGAN

Dataflow Sampling Example

T

UNIVERSITY OF MICHIGAN

53

‘ Dataflow Sampling Example

o

A i

X = read_input() ’ I

UNIVERSITY OF MICHIGAN

Dataflow Sampling Example

[Input }
J
X = read- input() }

C -

UNIVERSITY OF MICHIGAN

55

Dataflow Sampling Example

T

X = read_input()

J

C H

y:x*1024}

P

UNIVERSITY OF MICHIGAN

‘ A
<Skip Dataflow

56

Dataflow Sampling Example

[Input }
J
X = read_input() ﬁ:% validate(x) }

N ‘ J
__I‘

y:x*1024}

P

UNIVERSITY OF MICHIGAN

57

Dataflow Sampling Example

o

X = read_input()

-) validate(x) }
I I

4,y—:x*1024} {w:x+42}

P (R

UNIVERSITY OF MICHIGAN

58

‘ Dataflow Sampling Example

o

vr

x = read_input() :{validate(x)}

UNIVERSITY OF MICHIGAN 59

‘ Dataflow Sampling Example

T

vr

x = read_input() :;Evalidate(x)}

[Z=Yy*75 _ False Negative b

UNIVERSITY OF MICHIGAN 60

Mechanisms for Datatlow Sampling (1)

Start with demand analysis

Demand Analysis Tool

N

~

/
Native Instrumented
Application Application
(e.g. Valgrind)

/

Operating System

UNIVERSITY OF MICHIGAN

61

Mechanisms for Datatlow Sampling (1)

Start with demand analysis

Demand Analysis Tool

>

Instrumented
Application

Native

N

~

(e.g. Valgrind)

/

Operating System

UNIVERSITY OF MICHIGAN

62

Mechanisms for Datatlow Sampling (1)

Start with demand analysis

Demand Analysis Tool

>

: Instrumented
Native . .
TS Application

N

~

(e.g. Valgrind)

/

(_,;_Meta-d ata <tem

UNIVERSITY OF MICHIGAN

63

Mechanisms for Datatlow Sampling (1)

Start with demand analysis

Demand Analysis Tool

\

~

/
Native Instrumented
Application Alpiplliezitiol:
(e.g. Valgrind)

/

1

Operating System

UNIVERSITY OF MICHIGAN

64

Mechanisms for Datatlow Sampling (1)

Start with demand analysis

Demand Analysis Tool

4)
Native
Application

Operating System

UNIVERSITY OF MICHIGAN

65

Mechanisms for Datatlow Sampling (1)

Start with demand analysis

Demand Analysis Tool

No meta-data

- I
Nati Instrumented
ative Abnli ion
Application (e glg:) .

Operating System

UNIVERSITY OF MICHIGAN

66

Mechanisms for Datatlow Sampling (1)

Start with demand analysis

Demand Analysis Tool

>

Instrumented
Application

Native

N

~

(e.g. Valgrind)

/

Operating System

UNIVERSITY OF MICHIGAN

67

Mechanisms for Datatlow Sampling (2)

Remove dataflows if execution iIs too slow

Sampling Analysis Tool
a)
Native Instrumented
Application Application
N /

Operating System

UNIVERSITY OF MICHIGAN

Mechanisms for Datatlow Sampling (2)

Remove dataflows if execution iIs too slow

Sampling Analysis Tool
4)
Native Instrumented
3 et Application
2 N Y

Operating System

UNIVERSITY OF MICHIGAN

Mechanisms for Datatlow Sampling (2)

Remove dataflows if execution iIs too slow

Sampling Analysis Tool
4)
Native Instrumented
Application Application
N /

t

C:_Meta-data stem

UNIVERSITY OF MICHIGAN

Mechanisms for Datatlow Sampling (2)

Remove dataflows if execution iIs too slow

Sampling Analysis Tool

e I
Native Instrumented
Application ApE’on

Operating System

UNIVERSITY OF MICHIGAN

71

Mechanisms for Datatlow Sampling (2)

Remove dataflows if execution iIs too slow

Sampling Analysis Tool

e I
L Native 1 Instrumented

Application Ap on
»EH Threshold=

Operating System

UNIVERSITY OF MICHIGAN

Mechanisms for Datatlow Sampling (2)

Remove dataflows if execution iIs too slow

Sampling Analysis Tool

e I
L Native J Instrumented
=

Application ,. ApEon

Operating System

G

UNIVERSITY OF MICHIGAN

73

Mechanisms for Datatlow Sampling (2)

Remove dataflows if execution iIs too slow

Sampling Analysis Tool

e I
Native Instrumented
Application Ap ion
Clear meta-data

| |

Operating System

UNIVERSITY OF MICHIGAN

Mechanisms for Datatlow Sampling (2)

Remove dataflows if execution iIs too slow

Sampling Analysis Tool
4)
Native Instrumented
3 et Application
2 N Y

Operating System

UNIVERSITY OF MICHIGAN

Prototype Setup

Taint analysis sampling system
o Network packets untrusted

Xen-based demand analysis
o Whole-system analysis with modified QEMU

Overhead Manager (OHM) Is user-controlled

Xen Hypervisor

Admin VM OS and Applications

o N
Net Taint App} [App} pp

Analysis OHM \

Stack QEMU r | ~
< A A J Linux

_ /

UNIVERSITY OF MICHIGAN 76

Benchmarks

Performance — Network Throughput
o Example: ssh_receive

Accuracy of Sampling Analysis
o Real-world Security Exploits

Name Error Description

Apache Stack overflow in Apache Tomcat JK Connector
Eggdrop Stack overflow in Eggdrop IRC bot

Lynx Stack overflow in Lynx web browser
ProFTPD Heap smashing attack on ProFTPD Server
Squid Heap smashing attack on Squid proxy server

UNIVERSITY OF MICHIGAN 77

Performance of Dataflow Sampling (1)

ssh receive

N
U1

Throughput
with no analysis

N
o

=
o1

Ol

Throughput (MB/s)
=
o

o

0 20 40 60 30 100

Maximum % Time in Analysis

UNIVERSITY OF MICHIGAN

78

Performance of Dataflow Sampling (2)

netcat receive

o)
o

Throughput

with no analysis

o
|

o

P N W b
()

o

Throughput (MB/s)

-

20

-

UNIVERSITY OF MICHIGAN

40 60 80
Maximum % Time in Analysis

100

79

Performance of Dataflow Sampling (3)

N
U1

N
o

ssh_transmit

Throughput

with no analysis

=
o1

Ol

Throughput (MB/s)
[N
o

o

0 20

UNIVERSITY OF MICHIGAN

40 60 80
Maximum % Time in Analysis

100

80

Accuracy at Very Low Overhead

Max time In analysis: 1% every 10 seconds

Always stop analysis after threshold
o Lowest probability of detecting exploits

Name Chance of Detecting Exploit
Apache 100%
Eggdrop 100%
Lynx 100%
ProFTPD 100%

Squid 100%

UNIVERSITY OF MICHIGAN

Accuracy with Background Tasks

netcat_receive running with benchmark

= 100

S m Apache

LLJ

= 80 “Eggdrop

% 60 W Lynx

g B ProFTPD

5 40 ® Squid

QO

=

g 20

L

O

S 0.3 0.4
10% 25% 50% 75% 90%

Maximum Allowed Overhead %

UNIVERSITY OF MICHIGAN 82

Accuracy with Background Tasks

ssh_receive running in background

= 100
;L ®m Apache
LL
> 80 1 Eggdrop
48' 60 W Lynx
g E ProFTPD
‘5 40 m Squid
)
=
g 20
L
O
S 0.1
10% 25% 50% 75% 90%

Maximum % Time in Analysis

UNIVERSITY OF MICHIGAN 83

Conclusion & Future Work

Dynamic dataflow sampling gives users a
knob to control accuracy vs. performance

P
g v B3
,f»’ R i N
L \\!
\
A5

ACCURACY ACCURACY

= Better methods of sample choices
= Combine static information
= New types of sampling analysis

UNIVERSITY OF MICHIGAN

Conclusion & Future Work

Dynamic dataflow sampling gives users a
knob to control accuracy vs. performance

SPEED &
ACCURACY

= Better methods of sample choices
= Combine static information
= New types of sampling analysis

UNIVERSITY OF MICHIGAN

85

BACKUP SLIDES

UNIVERSITY OF MICHIGAN

86

Outline

Software Errors and Security
Dynamic Dataflow Analysis
Sampling and Distributed Analysis
Prototype System

Performance and Accuracy

UNIVERSITY OF MICHIGAN

87

Width Test

| o=

UNIVERSITY OF MICHIGAN 88

