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PROCESSING-IN-MEMORY? 
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HIGHLIGHT 

Memory system is a key limiter 

– At 4TB/s, vast majority of node energy could be consumed by the 

memory system 

 Prior PIM research constrained by 

– Implementation technology 

– Non-traditional programming models 

Our focus 

– 3D die stacking 

– Use base logic die(s) in memory stack 

 General-purpose processors 

 Support familiar programming models 

 Arbitrary programs vs a set of special operations 

Logic die with PIM 

Memory 
stack 
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• Moving compute close to memory promises significant gains 

• Memory is a key limiter (performance and power) 

• Exascale goals of 4TB/s/node and <5pj/bit 

• Prior research 

• Integration of caches and computation 

• “A logic-in-memory computer” (1970) 

• No large scale integration was possible. 

• Logic in DRAM processes 

• In-memory processors with reduced performance or highly specialized for a limited 

set of operations. 

• Reduced DRAM due to the presence of compute logic.  

• Embedded DRAM in logic processes 

• Not cost-effectively accommodate sufficient memory capacity 

• Reduced density of embedded memory 

PROCESSING-IN-MEMORY (PIM)   ---   OVERVIEW (I) 



5 |  Dong Ping Zhang: A new perspective on processing-in-memory architecture design | 21 June 2013  |  AMD Research | MSPC 

 

• New opportunity: logic die stacked with memory 

• Logic die needed anyway for signal redistribution and integrity 

• Potential for non-trivial compute 

• Key benefits 

• Reduce bandwidth bottlenecks 

• Improve energy efficiency 

• Increase compute for a fixed interposer area  

• Processor can be optimized for high BW/compute ratio  

• Challenges 

• Programming models and interfaces 

• Architectural tradeoffs 

• Application refactoring 

PROCESSING-IN-MEMORY (PIM)  ---   OVERVIEW (II) 
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OUTLINE 

 PIM architecture baseline 

 

 API specification  

 

 Emulator and performance models 

 

 Application studies 
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NODE HARDWARE ORGANIZATION 

 Single-level of PIM-attached memory stacks   

 Host has direct access to all memory 

– Non-PIM-enabled apps still work 

 Unified virtual address space 

– Shared page-tables between host and PIMs 

 Low-bandwidth inter-PIM interconnect 

 

Host Processor 

Interposer 
or board 

Logic die with PIM 

Memory  
dies 

Memory 
stack 
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PIM API OVERVIEW 

 Current focus is on single PIM-enabled node 

– Current PIM hardware baseline is general-purpose processor 

 Key goals of API 

– Facilitate data layout control 

– Dispatch compute to PIMs using standard parallel abstractions 

 A “convenient” level of abstraction for early PIM evaluations 

– Aimed at PIM feasibility studies 

– annotation of data and compute for PIM with reasonable programmer effort 

 Key API features: 

 discover device 

 query device characteristics 

 manage locality 

 dispatch compute 
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PIM PTHREAD EXAMPLE: PARALLEL PREFIX SUM 

… 

list_of_pims = malloc(max_pims * sizeof(pim_device_id)); 

failure = pim_get_device_ids(PIM_CLASS_0, max_pims, list_of_pims, &num_pims); 

for (i = 0; i < num_pims; i++) { 

    failure = pim_get_device_info(list_of_pims[i], PIM_CPU_CORES, needed_size, device_info, NULL); 

    … 

} 

… 

for (i = 0; i < num_pims; i++) { 

    parallel_input_array[i] = pim_malloc(sizeof(uint32_t) * chunk_size, list_of_pims[i], 

                                         PIM_MEM_DEFAULT_FLAGS, PIM_PLATFORM_PTHREAD_CPU); 

    parallel_output_array[i] = pim_malloc(sizeof(uint64_t) * chunk_size, list_of_pims[i], 

                                          PIM_MEM_DEFAULT_FLAGS, PIM_PLATFORM_PTHREAD_CPU); 

} 

… 

for (i = 0; i < num_pims; i++) { 

    pim_args[PTHREAD_ARG_THREAD] = &(pim_threads[i]); // pthread_t 

    arg_size[PTHREAD_ARG_THREAD] = sizeof(pthread_t); 

    pim_args[PTHREAD_ARG_ATTR] = NULL; // pthread_attr_t 

    arg_size[PTHREAD_ARG_ATTR] = sizeof(pthread_attr_t); 

    pim_args[PTHREAD_ARG_INPUT] = &(thread_input[i]); // void * for thread input 

    arg_size[PTHREAD_ARG_INPUT] = sizeof(void *); 

    pim_function.func_ptr = parallel_prefix_sum; 

    spawn_error = pim_spawn(pim_function, pim_args, arg_size, NUM_PTHREAD_ARGUMENTS,  

                            list_of_pims[i], PIM_PLATFORM_PTHREAD_CPU); 

} 

for (i = 0; i < num_pims; i++) { 

    pthread_join(pim_threads[i], NULL); 

} 

… 
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PIM EMULATION AND PERFORMANCE MODEL 

 Phase 1: Native execution on commodity hardware 

 Capture execution trace and performance stats 

 Phase 2: Post-process with performance models 

 Predict overall performance on future memory and processors 

Phase 2: Perf Model 

Phase 1: Emulation 

Commodity Hardware 

(CPU/GPU/APU) 

Linux 

Event 

Trace & 

Stats 

User Application 

PIM Software Stack 

Emulated Machine 

Description 
Performance Models 

Trace Post-processor 

Host 

Tasks 
PIM 

Tasks 
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PARALLEL PREFIX SUM – HOST-ONLY VS HOST+PIM 
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PARALLEL PREFIX SUM – HOST-ONLY VS HOST+PIM 
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0.24ms 

WAXPBY – HOST-ONLY VS HOST+PIM 
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SUMMARY AND FUTURE WORK 

 PIM architecture baseline 

 

 API specification  

 

 Emulator and performance models 

 

 Application studies 

 

- Design space study 

 

- Evaluation of the performance models 

 

- Further work on API, execution model, applications etc.  
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