
A new perspective on

processing-in-memory

architecture design

These data are submitted with limited rights under Government Contract No. DE-AC52-8MA27344 and

subcontract B600716 from Advanced Micro Devices, Inc. on behalf of AMD Advanced Research LLC. These

data may be reproduced and used by the Department of Energy on a need-to-know basis, with the express

limitation that they will not, without written permission of the AMD Advanced Research LLC, be used for

purposes of manufacture nor disclosed outside the Government.

This notice shall be marked on any reproduction of these data, in whole or in part.

Dong Ping Zhang, Nuwan Jayasena, Alexander Lyashevsky,

Joe Greathouse, Mitesh Meswani, Mark Nutter, Mike Ignatowski

AMD Research

2 | Dong Ping Zhang: A new perspective on processing-in-memory architecture design | 21 June 2013 | AMD Research | MSPC

PROCESSING-IN-MEMORY?

3 | Dong Ping Zhang: A new perspective on processing-in-memory architecture design | 21 June 2013 | AMD Research | MSPC

HIGHLIGHT

Memory system is a key limiter

– At 4TB/s, vast majority of node energy could be consumed by the

memory system

 Prior PIM research constrained by

– Implementation technology

– Non-traditional programming models

Our focus

– 3D die stacking

– Use base logic die(s) in memory stack

 General-purpose processors

 Support familiar programming models

 Arbitrary programs vs a set of special operations

Logic die with PIM

Memory
stack

4 | Dong Ping Zhang: A new perspective on processing-in-memory architecture design | 21 June 2013 | AMD Research | MSPC

• Moving compute close to memory promises significant gains

• Memory is a key limiter (performance and power)

• Exascale goals of 4TB/s/node and <5pj/bit

• Prior research

• Integration of caches and computation

• “A logic-in-memory computer” (1970)

• No large scale integration was possible.

• Logic in DRAM processes

• In-memory processors with reduced performance or highly specialized for a limited

set of operations.

• Reduced DRAM due to the presence of compute logic.

• Embedded DRAM in logic processes

• Not cost-effectively accommodate sufficient memory capacity

• Reduced density of embedded memory

PROCESSING-IN-MEMORY (PIM) --- OVERVIEW (I)

5 | Dong Ping Zhang: A new perspective on processing-in-memory architecture design | 21 June 2013 | AMD Research | MSPC

• New opportunity: logic die stacked with memory

• Logic die needed anyway for signal redistribution and integrity

• Potential for non-trivial compute

• Key benefits

• Reduce bandwidth bottlenecks

• Improve energy efficiency

• Increase compute for a fixed interposer area

• Processor can be optimized for high BW/compute ratio

• Challenges

• Programming models and interfaces

• Architectural tradeoffs

• Application refactoring

PROCESSING-IN-MEMORY (PIM) --- OVERVIEW (II)

6 | Dong Ping Zhang: A new perspective on processing-in-memory architecture design | 21 June 2013 | AMD Research | MSPC

OUTLINE

 PIM architecture baseline

 API specification

 Emulator and performance models

 Application studies

7 | Dong Ping Zhang: A new perspective on processing-in-memory architecture design | 21 June 2013 | AMD Research | MSPC

NODE HARDWARE ORGANIZATION

 Single-level of PIM-attached memory stacks

 Host has direct access to all memory

– Non-PIM-enabled apps still work

 Unified virtual address space

– Shared page-tables between host and PIMs

 Low-bandwidth inter-PIM interconnect

Host Processor

Interposer
or board

Logic die with PIM

Memory
dies

Memory
stack

8 | Dong Ping Zhang: A new perspective on processing-in-memory architecture design | 21 June 2013 | AMD Research | MSPC

PIM API OVERVIEW

 Current focus is on single PIM-enabled node

– Current PIM hardware baseline is general-purpose processor

 Key goals of API

– Facilitate data layout control

– Dispatch compute to PIMs using standard parallel abstractions

 A “convenient” level of abstraction for early PIM evaluations

– Aimed at PIM feasibility studies

– annotation of data and compute for PIM with reasonable programmer effort

 Key API features:

 discover device

 query device characteristics

 manage locality

 dispatch compute

9 | Dong Ping Zhang: A new perspective on processing-in-memory architecture design | 21 June 2013 | AMD Research | MSPC

PIM PTHREAD EXAMPLE: PARALLEL PREFIX SUM

…

list_of_pims = malloc(max_pims * sizeof(pim_device_id));

failure = pim_get_device_ids(PIM_CLASS_0, max_pims, list_of_pims, &num_pims);

for (i = 0; i < num_pims; i++) {

 failure = pim_get_device_info(list_of_pims[i], PIM_CPU_CORES, needed_size, device_info, NULL);

 …

}

…

for (i = 0; i < num_pims; i++) {

 parallel_input_array[i] = pim_malloc(sizeof(uint32_t) * chunk_size, list_of_pims[i],

 PIM_MEM_DEFAULT_FLAGS, PIM_PLATFORM_PTHREAD_CPU);

 parallel_output_array[i] = pim_malloc(sizeof(uint64_t) * chunk_size, list_of_pims[i],

 PIM_MEM_DEFAULT_FLAGS, PIM_PLATFORM_PTHREAD_CPU);

}

…

for (i = 0; i < num_pims; i++) {

 pim_args[PTHREAD_ARG_THREAD] = &(pim_threads[i]); // pthread_t

 arg_size[PTHREAD_ARG_THREAD] = sizeof(pthread_t);

 pim_args[PTHREAD_ARG_ATTR] = NULL; // pthread_attr_t

 arg_size[PTHREAD_ARG_ATTR] = sizeof(pthread_attr_t);

 pim_args[PTHREAD_ARG_INPUT] = &(thread_input[i]); // void * for thread input

 arg_size[PTHREAD_ARG_INPUT] = sizeof(void *);

 pim_function.func_ptr = parallel_prefix_sum;

 spawn_error = pim_spawn(pim_function, pim_args, arg_size, NUM_PTHREAD_ARGUMENTS,

 list_of_pims[i], PIM_PLATFORM_PTHREAD_CPU);

}

for (i = 0; i < num_pims; i++) {

 pthread_join(pim_threads[i], NULL);

}

…

10 | Dong Ping Zhang: A new perspective on processing-in-memory architecture design | 21 June 2013 | AMD Research | MSPC

PIM EMULATION AND PERFORMANCE MODEL

 Phase 1: Native execution on commodity hardware

 Capture execution trace and performance stats

 Phase 2: Post-process with performance models

 Predict overall performance on future memory and processors

Phase 2: Perf Model

Phase 1: Emulation

Commodity Hardware

(CPU/GPU/APU)

Linux

Event

Trace &

Stats

User Application

PIM Software Stack

Emulated Machine

Description
Performance Models

Trace Post-processor

Host

Tasks
PIM

Tasks

11 | Dong Ping Zhang: A new perspective on processing-in-memory architecture design | 21 June 2013 | AMD Research | MSPC

PARALLEL PREFIX SUM – HOST-ONLY VS HOST+PIM

0.466s CPU0

Time

CPU1

0.251s

CPU2

CPU3

Initialization

0.279s

0.305s

0.306s

Parallel 1

0.155

s

0.170

s

0.171

s

Parallel 2

Host frequency: 4GHz

Latency: Same as present

Total runtime: 0.943s

0.466s
Host

CPU0

0.187s
PIM0

PIM1

PIM2

PIM3

0.206s

0.224s

0.225s

0.12

0.13

0.13

Host frequency: 4GHz

PIM frequency: 2GHZ

Host latency: current

PIM latency: 30% reduction

Total runtime: 0.820s

 15% Faster

PIM computation benefits

from reduced latency

Im
p

ro
v
e

m
e

n
t

12 | Dong Ping Zhang: A new perspective on processing-in-memory architecture design | 21 June 2013 | AMD Research | MSPC

PARALLEL PREFIX SUM – HOST-ONLY VS HOST+PIM

Time
Initialization Parallel 1 Parallel 2

0.466s
Host

CPU0

0.14
PIM0

PIM1

PIM2

PIM3

0.152

0.165

0.165

0.

0

9

0.1

0.1

Host frequency: 4GHz

PIM frequency: 2GHZ

Host latency: current

PIM latency: 50% reduction

Total runtime: 0.728s

 30% Faster

Im
p

ro
v
e

m
e

n
t

0.466s
Host

CPU0

0.259s
PIM0

PIM1

PIM2

PIM3

0.287s

0.313s

0.314s

0.162s

0.178s

0.178s

Host frequency: 4GHz

PIM frequency: 2GHZ

Host latency = PIM latency

Total runtime: 0.958s

 2% Slower

13 | Dong Ping Zhang: A new perspective on processing-in-memory architecture design | 21 June 2013 | AMD Research | MSPC

0.24ms

WAXPBY – HOST-ONLY VS HOST+PIM

CPU0

Time

GPU0

Initialization

0.47ms

waxpby

Host GPU frequency: 1GHz

Host GPU CUs: 192

Host DRAM BW: 2TB/s (4 stacks)

Host

CPU0

PIM0

PIM1

PIM2

PIM3

PIM GPU frequency: 800MHz

PIM GPU CUs: 16 (per PIM)

PIM DRAM BW: 1TB/s/stack

Im
p

ro
v
e

m
e

n
t

0.24ms

0.24ms

0.24ms

0.12ms

Host

CPU0

PIM0

PIM1

PIM2

PIM3

PIM GPU frequency: 800MHz

PIM GPU CUs: 16 (per PIM)

PIM DRAM BW: 2TB/s/stack

Kernel performance scales with

Bandwidth

 Im
p

ro
v
e

m
e

n
t

0.12ms

0.12ms

0.12ms

14 | Dong Ping Zhang: A new perspective on processing-in-memory architecture design | 21 June 2013 | AMD Research | MSPC

SUMMARY AND FUTURE WORK

 PIM architecture baseline

 API specification

 Emulator and performance models

 Application studies

- Design space study

- Evaluation of the performance models

- Further work on API, execution model, applications etc.

15 | Dong Ping Zhang: A new perspective on processing-in-memory architecture design | 21 June 2013 | AMD Research | MSPC

ACKNOWLEDGEMENT:

Lee Howes

Gabe Loh

QUESTIONS?

FURTHER DISCUSSIONS:

Dongping.zhang@amd.com

