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Model Predictive Control (MPC)

 Previous dynamic power management policies ignore 

future application behavior 

• Leads to performance loss or wasted energy

 MPC looks into the future to determine the best configuration for the current 

optimization time step

 Though effective in many domains, overheads far too high for short 

timescales of dynamic power management 

 Our approach: An approximation of MPC that dramatically improves 

GPGPU energy-efficiency with orders of magnitude lower overhead
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Dynamic GPGPU Power Management

 Attempts to maximize performance 
within power constraints

 Hardware knobs

• Number of active GPU Compute Units

• DVFS states

 Goal:  Reduce the energy of the GPU application phases 
compared to the baseline power manager while matching its 
performance
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Applying MPC to Dynamic Power Management

 General Idea
Horizon H

Apply here

GPU kernels
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Applying MPC to Dynamic Power Management

 General Idea

 MPC has high overhead

• Complexity scales exponentially with H

• Minimizing energy under performance cap with discrete HW 
settings is fundamentally NP-hard

• Usually requires dedicated optimization solvers, such as CVX, 
lpsolve, etc.

Horizon H

Apply here

GPU kernels
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Approximations to MPC

 Greedy Hill Climbing to reduce the search space

 Static search order heuristic to make MPC optimization 
polynomial rather than exponential

 Dynamically tuning of the horizon length H to limit the 
optimization overhead
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MPC Power Manager Architecture
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MPC Optimizer

 Objective: Find minimum energy HW 
setting for each kernel without impacting 
overall performance
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MPC Optimizer

Greedy Hill Climbing optimization

•Select the HW knob with highest energy sensitivity 

•Search for the lowest energy configuration using hill climbing

MPC Search Heuristic

•Determines a static order without backtracking

•Search cost becomes polynomial

•Details in the paper

 65X average reduction in total cost evaluations

 Objective: Find minimum energy HW 
setting for each kernel without impacting 
overall performance
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Adaptive Horizon Generator

 Longer horizon improves savings but 
increases MPC optimization time
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Adaptive Horizon Generator

 Limit the overhead to a slowdown factor 𝛼 by dynamically 
varying the horizon length

 Longer horizon improves savings but 
increases MPC optimization time
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Adaptive Horizon Generator

 Limit the overhead to a slowdown factor 𝛼 by dynamically 
varying the horizon length

 General Idea:

 Longer horizon improves savings but 
increases MPC optimization time

Est. MPC 

Overhead + 

Perf. Loss ≤ 𝛼

Increase 

Horizon Length

Decrease 

Horizon Length

YesNo
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MPC in Action – An Example

Time

Past
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MPC in Action – An Example

Time𝐻 = 4

Past

Search order

(2, 1, 4, 5, 3, 6)
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MPC in Action – An Example
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MPC in Action – An Example
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MPC in Action – An Example
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MPC in Action – An Example

Time𝐻 = 4
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MPC in Action – An Example
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MPC in Action – An Example
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MPC in Action – An Example
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MPC in Action – An Example
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Experimental Testbed

 AMD A10-7850K APU

• 2 out-of-order dual core CPUs

• GPU contains 512 processing elements (8 CUs) at 

720 MHz

 DVFS states

 Total HW configuration: 336

NB and GPU share the same voltage rail

CPU P States Voltage (V) Freq (GHz)

P1 1.325 3.9

P2 1.3125 3.8

P3 1.2625 3.7

P4 1.225 3.5

P5 1.0625 3

P6 0.975 2.4

P7 0.8875 1.7

NB P States Freq (GHz)

Memory 

Freq (MHz)

NB0 1.8 800

NB1 1.6 800

NB2 1.4 800

NB3 1.1 333

GPU P States Voltage (V) Freq (GHz)

DPM0 0.95 351

DPM1 1.05 450

DPM2 1.125 553

DPM3 1.1875 654

DPM4 1.225 720
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Experimental Setup

 15 GPGPU Benchmarks

 Baseline scheme

• AMD Turbo Core

 Predict Previous Kernel (PPK)

• Assume last kernel repeats

• State-of-the-art: Harmonia ISCA’15, 

McLaughlin et al. ASBD’14

 Maximum overhead 𝛼 = 5%

Category Benchmarks Benchmark Suite
Regular 

Expression

Regular

mandelbulbGPU Phoronix A20

Nbody AMD APP SDK A10

juliaGPU Phoronix A10

Irregular 

with 

repetitive 

pattern

EigenValue AMD APP SDK (AB)5

XSBench Exascale (ABC)2

Irregular 

with non-

repetitive 

pattern

Spmv SHOC A10B10C10

Kmeans Rodinia AB20

Irregular 

with 

kernels 

varying 

with input

swat OpenDwarfs

Complex 

pattern

color Pannotia

pb-bfs Parboil

mis Pannotia

srad Rodinia

lulesh Exascale

lud Rodinia

hybridsort Rodinia
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Energy-Performance Gains
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MPC Overhead
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MPC Overhead
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Ramification of Prediction Inaccuracy

 RF: 12% Power, 25% Perf

 15% Power, 10% Perf: Wu et al. [HPCA 2015]

 5% Power, 5% Perf: Paul et al. [ISCA 2015]
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Conclusions

 MPC looks into the future to determine the best configuration 
for the current optimization time step

 Though effective in many domains, overheads far too high for 
short timescales of dynamic power management 

 We devise an approximation of MPC that dramatically 
improves GPGPU energy-efficiency with orders of magnitude 
lower overhead

 Our approach reduces energy by 24.8% with only a 1.8% 
performance impact
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Performance-aware Power Management

 Optimum node-level power efficiency is a complex function of SOC configuration, 

workload characteristics, programming model, and node-level objective/constraints 
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Performance-aware Power Management

 Optimum node-level power efficiency is a complex function of SOC configuration, 
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Performance-aware Power Management

 Optimum node-level power efficiency is a complex function of SOC configuration, 

workload characteristics, programming model, and node-level objective/constraints 
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Performance-aware Power Management

 Optimum node-level power efficiency is a complex function of SOC configuration, 

workload characteristics, programming model, and node-level objective/constraints 
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HW Knobs: DVFS states of CPU, GPU, NB etc.

Watt

User Application

Host 

Tasks
GPU 

Tasks

Programming Model

Time-varying Workload

Reduce energy of the GPGPU kernel phase while performing better than a target

Non-linear power vs. performance curves



41

Model Predictive Control (MPC)

 MPC looks into the future to determine the best configuration 
for the current optimization time step

 Though effective in many domains, overheads far too high for 
short timescales of dynamic power management 

 Our approach: An approximation of MPC that 
dramatically improves GPGPU energy-efficiency 
with orders of magnitude lower overhead

Horizon H

Current

timestep
Shift horizon
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Dynamic GPGPU Power Management

 CPU and GPU consume significant power in servers

 Previous approaches to dynamic power management are 
locally predictive and ignore future kernel behavior 

• Performance loss or wasted energy
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Dynamic GPGPU Power Management

 CPU and GPU consume significant power in servers

 Previous approaches to dynamic power management are 
locally predictive and ignore future kernel behavior 

• Performance loss or wasted energy

 Applying MPC is challenging for short timescales of dynamic 
power management 

 Goal: Approximations to MPC that save GPGPU energy 
within the timescales of a typical server operation without 
degrading performance

Model Predictive Control

Proactively looks ahead into the future
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Dynamic GPGPU Power Management

 Goal: Reduce GPGPU energy within the timescales of a 
typical server operation without degrading performance

 Computationally Intensive

• NP-Hard

• Challenging for short timescales of dynamic power management 

 Idea: Improve energy efficiency by looking into future phases

• Model Predictive Control (MPC) 

• Dynamically vary computation to limit performance overhead
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Traditional Energy Management

 Static

• Predefined set of decisions

 Reactive

• Act after sensing a change in behavior

 Locally Predictive

• Predict the immediate behavior 
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Traditional Energy Management

 Static

• Predefined set of decisions

 Reactive

• Act after sensing a change in behavior

 Locally Predictive

• Predict the immediate behavior 

Performance loss 

or wasted energy

Proactive Energy Management

Adapt from past and look-ahead into the future



50

Motivating Future Awareness
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Motivating Future Awareness

 Baseline

• AMD Turbo Core

 Hardware Knobs

• DVFS states, GPU CUs

 Predict Previous Kernel (PPK):

• Assume last kernel repeats

• State-of-the-art: Harmonia ISCA’15, 

McLaughlin et al. ASBD’14

 Theoretically Optimal (TO): 
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Motivating Future Awareness

 Baseline

• AMD Turbo Core

 Hardware Knobs

• DVFS states, GPU CUs

 Predict Previous Kernel (PPK):

• Assume last kernel repeats

• State-of-the-art: Harmonia ISCA’15, 

McLaughlin et al. ASBD’14

 Theoretically Optimal (TO): 

• Perfect knowledge of future

• Impractical
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Ramifications of Ignoring Future

 Spmv
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Ramifications of Ignoring Future

 Spmv
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Ramifications of Ignoring Future

 Spmv
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Ramifications of Ignoring Future

 Kmeans
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Ramifications of Ignoring Future

 Kmeans
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Ramifications of Ignoring Future

 Kmeans
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Ramifications of Ignoring Future

 Kmeans
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Background

 Typical GPGPU application phase
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Kernel Performance Scaling

Energy-optimal configuration differ across kernels
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Model Predictive Control (MPC)

 General Idea
Horizon H
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Model Predictive Control (MPC)

 General Idea

 MPC Components

• Accurate system model

• Future input forecast

• Optimization

Horizon H

Apply here

Power and performance prediction model

Kernel pattern extractor

Greedy and heuristic based optimizer
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Feedback-based Performance Tracker

Performance 

met 

previously?

Optimize Aggressively

Reduce energy

Avoid performance loss

Relax optimization

Spend energy 

Reduce performance 

loss

YesNo

 Switch the optimization goal based 
on past performance and the target
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Performance Power Model

Kernel

HW 

setting

Performance

Power Model

Performance Tracker
Performance 

Feedback

MPC Optimizer

Optimizer

Performance 

Power

Perf. 

Counters of 

Future 

Kernels

Kernel 

Pattern 

Extractor

Performance 

Counters

Performance 

Target

Adaptive Horizon Generator

Horizon LengthOptimization Overhead

Max Overhead

 Trained offline using Random Forest Learning Algorithm

 Estimates performance and power for any HW configuration
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Kernel Pattern Extractor

Kernel

HW 

setting

Performance
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Performance 
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Performance 

Power
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Counters of 

Future 

Kernels

Kernel 

Pattern 
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Performance 
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Performance 

Target

Adaptive Horizon Generator

Horizon LengthOptimization Overhead

Max Overhead

 Extracts kernel execution pattern upon the first encounter

 Stores the performance counters of dissimilar kernels and retunes it
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MPC Optimizer

 Greedy Hill Climbing optimization

• Using the predictor, select the HW knob with highest energy sensitivity 

• Search for low energy configuration using hill climbing
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MPC Optimizer
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MPC Optimizer

 Greedy Hill Climbing optimization

• Using the predictor, select the HW knob with highest energy sensitivity 
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MPC Optimizer

 Greedy Hill Climbing optimization

• Using the predictor, select the HW knob with highest energy sensitivity 

• Search for low energy configuration using hill climbing
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Hill climbing

20× cost 

reduction over 

exhaustive
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MPC Optimizer
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MPC Optimizer

Greedy Hill Climbing optimization
• Select the HW knob with highest energy sensitivity and search for low energy 

configuration using hill climbing
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MPC Optimizer

Greedy Hill Climbing optimization
• Select the HW knob with highest energy sensitivity and search for low energy 

configuration using hill climbing

MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high performing kernels first 

• Search cost becomes polynomial
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MPC Optimizer
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Greedy Hill Climbing optimization
• Select the HW knob with highest energy sensitivity and search for low energy 

configuration using hill climbing

MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high performing kernels first 

• Search cost becomes polynomial
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Greedy Hill Climbing optimization
• Select the HW knob with highest energy sensitivity and search for low energy 

configuration using hill climbing

MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high performing kernels first 

• Search cost becomes polynomial
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MPC Optimizer
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Greedy Hill Climbing optimization
• Select the HW knob with highest energy sensitivity and search for low energy 

configuration using hill climbing

MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high performing kernels first 

• Search cost becomes polynomial
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Greedy Hill Climbing optimization
• Select the HW knob with highest energy sensitivity and search for low energy 

configuration using hill climbing

MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high performing kernels first 

• Search cost becomes polynomial
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MPC Optimizer

MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high performing kernels first

• Search cost becomes polynomial
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MPC Optimizer
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MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high performing kernels first

• Search cost becomes polynomial
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MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high performing kernels first

• Search cost becomes polynomial
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MPC Optimizer
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MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high performing kernels first

• Search cost becomes polynomial
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MPC Optimizer
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MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high performing kernels first

• Search cost becomes polynomial
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Adaptive Horizon Generator

MPC runs between kernel invocations
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Adaptive Horizon Generator

MPC runs between kernel invocations

 Longer horizon increases MPC optimization time

 Limit the overhead 𝛼 by dynamically varying the horizon length

Kernels

MPC

𝛼
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Adaptive Horizon Generator

MPC runs between kernel invocations

 Longer horizon increases MPC optimization time

 Limit the overhead 𝛼 by dynamically varying the horizon length

 General Idea:

Kernels

MPC

𝛼

(𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑖 − 1 𝑘𝑒𝑟𝑛𝑒𝑙𝑠) + (𝐸𝑠𝑡.𝑀𝑃𝐶 𝑂𝑝𝑡. 𝑇𝑖𝑚𝑒) + (𝐸𝑠𝑡. 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑘𝑒𝑟𝑛𝑒𝑙 𝑖)

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑖 𝑘𝑒𝑟𝑛𝑒𝑙𝑠
≤ 1 + 𝛼
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Adaptive Horizon Generator

MPC runs between kernel invocations

 Longer horizon increases MPC optimization time

 Limit the overhead 𝛼 by dynamically varying the horizon length

 General Idea:
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𝛼
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𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑖 𝑘𝑒𝑟𝑛𝑒𝑙𝑠
≤ 1 + 𝛼
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Dynamic GPGPU Power Mgmt. Formulation

 Minimize energy over 𝑁 GPU kernels such that the 
performance target is met

𝑆 = 𝑐𝑝𝑢 × 𝑛𝑏 × 𝑔𝑝𝑢 × 𝑐𝑢
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Theoretically Optimal

 GLPK to solve the Integer Linear Programming (ILP) 
formulation
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Predict Previous Kernel (PPK)

 Minimize energy of kernel 𝑖 such that the runtime 
performance so far exceeds the target
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MPC-based GPGPU Power Manager

 Optimize energy for next 𝐻 kernels such that the runtime 
performance at the end of 𝐻 kernels exceeds the target
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Runtime Performance Tracker

 Performance requirement of kernel, 𝑘, is enforced as follows:

 Kernel time headroom is updated according to:
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Feedback-based Performance Tracker

Performance 

met 

previously?

Optimize Aggressively

Reduce energy

Avoid performance loss

Relax optimization

Spend energy 

Reduce performance 

loss

YesNo
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MPC Optimizer
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MPC Optimizer

 Greedy Hill Climbing optimization
• Select the HW knob with highest energy sensitivity and search 

for low energy configuration using hill climbing
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MPC Optimizer

 Greedy Hill Climbing optimization
• Select the HW knob with highest energy sensitivity and search 

for low energy configuration using hill climbing

 MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing 

kernels first

– Low to high performance (e.g. Kmeans): Optimize high 

performing kernels first 

• Search cost becomes polynomial

 65X average reduction in total cost evaluations

An Example

 Search order = (2, 1, 4, 5, 3)

H
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MPC Optimizer

An Example

 Search order = (2, 1, 4, 5, 3)

H

2

 Greedy Hill Climbing optimization
• Select the HW knob with highest energy sensitivity and search 

for low energy configuration using hill climbing

 MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing 

kernels first

– Low to high performance (e.g. Kmeans): Optimize high 

performing kernels first 

• Search cost becomes polynomial

 65X average reduction in total cost evaluations
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MPC Optimizer

An Example

 Search order = (2, 1, 4, 5, 3)

H

Apply here

2 1

 Greedy Hill Climbing optimization
• Select the HW knob with highest energy sensitivity and search 

for low energy configuration using hill climbing

 MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing 

kernels first

– Low to high performance (e.g. Kmeans): Optimize high 

performing kernels first 

• Search cost becomes polynomial

 65X average reduction in total cost evaluations
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MPC Optimizer

 Greedy hill climbing optimization

• Greedy: Select the HW knob with highest energy 

sensitivity

• Hill Climbing: Continue finding low energy 

configuration (within perf target), and stop

• Reduces search cost by 20X

 MPC Search Heuristic

• Determine a static order requiring no backtracking

• General Idea

– High to low performance (e.g. Spmv): Optimize low 

performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high 

performing kernels first 

• Search becomes polynomial

An Example

 Search order = (2, 1, 4, 5, 3)

H
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MPC Optimizer

 Greedy hill climbing optimization

• Greedy: Select the HW knob with highest energy 

sensitivity

• Hill Climbing: Continue finding low energy 

configuration (within perf target), and stop

• Reduces search cost by 20X

 MPC Search Heuristic

• Determine a static order requiring no backtracking

• General Idea

– High to low performance (e.g. Spmv): Optimize low 

performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high 

performing kernels first 

• Search becomes polynomial

An Example

 Search order = (2, 1, 4, 5, 3)2

H

Apply here
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MPC Optimizer

 Greedy hill climbing optimization

• Greedy: Select the HW knob with highest energy 

sensitivity

• Hill Climbing: Continue finding low energy 

configuration (within perf target), and stop

• Reduces search cost by 20X

 MPC Search Heuristic

• Determine a static order requiring no backtracking

• General Idea

– High to low performance (e.g. Spmv): Optimize low 

performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high 

performing kernels first 

• Search becomes polynomial

 Average reduction in total cost evaluations: 65X

An Example

 Search order = (2, 1, 4, 5, 3)2

H

Apply here
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GPGPU Benchmarks

Category Benchmarks Benchmark Suite Regular Expression

Regular

mandelbulbGPU Phoronix A20

Nbody AMD APP SDK A10

juliaGPU Phoronix A10

Irregular with 

repetitive pattern

EigenValue AMD APP SDK (AB)5

XSBench Exascale (ABC)2

Irregular with non-

repetitive pattern

Spmv SHOC A10B10C10

Kmeans Rodinia AB20

Irregular with 

kernels varying 

with input

swat OpenDwarfs

Complex pattern

color Pannotia

pb-bfs Parboil

mis Pannotia

srad Rodinia

lulesh Exascale

lud Rodinia

hybridsort Rodinia
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Experimental Testbed (Detailed)

 AMD A10-7850K APU

• 2 out-of-order dual core CPUs

• GPU contains 512 processing elements (8 CUs) at 

720 MHz

– Each CU has 4 SIMD Vector Units 

– 16 PEs per SIMD vector unit

 DVFS states NB and GPU share the same voltage rail
CPU P States Voltage (V) Freq (GHz)

P1 1.325 3.9

P2 1.3125 3.8

P3 1.2625 3.7

P4 1.225 3.5

P5 1.0625 3

P6 0.975 2.4

P7 0.8875 1.7

NB P States Freq (GHz)

Memory 

Freq (MHz)

NB0 1.8 800

NB1 1.6 800

NB2 1.4 800

NB3 1.1 333

GPU P States Voltage (V) Freq (GHz)

DPM0 0.95 351

DPM1 1.05 450

DPM2 1.125 553

DPM3 1.1875 654

DPM4 1.225 720

 GPU CUs and DVFS states changed in multiples of 2

 Total HW configuration: 336
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Experimental Setup

 15 GPGPU Benchmarks

• Sampled from 73 benchmarks

• 75% irregular

• 44% vary with input

 Baseline scheme

• AMD Turbo Core

 Algorithms

• PPK

• MPC

• TO

 Results based on real hardware traces

Category Benchmarks

Benchmark 

Suite Regular Expression

Regular

mandelbulbGPU Phoronix A20

Nbody AMD APP SDK A10

juliaGPU Phoronix A10

Irregular 

with 

repetitive 

pattern

EigenValue AMD APP SDK (AB)5

XSBench Exascale (ABC)2

Irregular 

with non-

repetitive 

pattern

Spmv SHOC A10B10C10

Kmeans Rodinia AB20

Irregular 

with kernels 

varying with 

input

swat OpenDwarfs

Complex pattern

color Pannotia

pb-bfs Parboil

mis Pannotia

srad Rodinia

lulesh Exascale

lud Rodinia

hybridsort Rodinia
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Polynomial MPC w/ Theoretical Optimal
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Polynomial MPC w/ Theoretical Optimal
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GPU Energy Savings
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MPC Energy-Performance w.r.t PPK
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Amortization of Initial Loses
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Final Takeaway

 MPC is a versatile scheme

• Does not hurt gains of regular benchmarks

• Improves energy savings

• Reduces performance loss

 Online MPC reduces performance loss compared to 
traditional approaches

 Online MPC is resilient to prediction inaccuracy due to

• Performance feedback

• MPC’s greedy and heuristic approximations depend minimally 
on prediction models


