
Dynamic GPGPU Power Management Using

Adaptive Model Predictive Control

Abhinandan Majumdar*, Leonardo Piga†, Indrani Paul†,

Joseph L. Greathouse†, Wei Huang†, David H. Albonesi*

*Computer Systems Laboratory, Cornell University

†Advanced Micro Devices, Inc.

2

Model Predictive Control (MPC)

 Previous dynamic power management policies ignore

future application behavior

• Leads to performance loss or wasted energy

 MPC looks into the future to determine the best configuration for the current

optimization time step

 Though effective in many domains, overheads far too high for short

timescales of dynamic power management

 Our approach: An approximation of MPC that dramatically improves

GPGPU energy-efficiency with orders of magnitude lower overhead

3

Dynamic GPGPU Power Management

 Attempts to maximize performance
within power constraints

 Hardware knobs

• Number of active GPU Compute Units

• DVFS states

 Goal: Reduce the energy of the GPU application phases
compared to the baseline power manager while matching its
performance

4

Applying MPC to Dynamic Power Management

 General Idea
Horizon H

Apply here

GPU kernels

5

Applying MPC to Dynamic Power Management

 General Idea
Horizon H

Apply here

GPU kernels

6

Applying MPC to Dynamic Power Management

 General Idea

 MPC has high overhead

• Complexity scales exponentially with H

• Minimizing energy under performance cap with discrete HW
settings is fundamentally NP-hard

• Usually requires dedicated optimization solvers, such as CVX,
lpsolve, etc.

Horizon H

Apply here

GPU kernels

7

Approximations to MPC

 Greedy Hill Climbing to reduce the search space

 Static search order heuristic to make MPC optimization
polynomial rather than exponential

 Dynamically tuning of the horizon length H to limit the
optimization overhead

8

MPC Power Manager Architecture

Kernel

HW

setting

Performance

Power Model

Performance Tracker
Performance

Feedback

MPC Optimizer

Optimizer

Performance

Power

Perf.

Counters of

Future

Kernels

Kernel

Pattern

Extractor

Performance

Counters

Performance

Target

Adaptive Horizon Generator

Horizon LengthOptimization Overhead

Max Overhead

9

MPC Optimizer

 Objective: Find minimum energy HW
setting for each kernel without impacting
overall performance

10

MPC Optimizer

Greedy Hill Climbing optimization

•Select the HW knob with highest energy sensitivity

•Search for the lowest energy configuration using hill climbing

MPC Search Heuristic

•Determines a static order without backtracking

•Search cost becomes polynomial

•Details in the paper

 65X average reduction in total cost evaluations

 Objective: Find minimum energy HW
setting for each kernel without impacting
overall performance

11

Adaptive Horizon Generator

 Longer horizon improves savings but
increases MPC optimization time

12

Adaptive Horizon Generator

 Limit the overhead to a slowdown factor 𝛼 by dynamically
varying the horizon length

 Longer horizon improves savings but
increases MPC optimization time

13

Adaptive Horizon Generator

 Limit the overhead to a slowdown factor 𝛼 by dynamically
varying the horizon length

 General Idea:

 Longer horizon improves savings but
increases MPC optimization time

Est. MPC

Overhead +

Perf. Loss ≤ 𝛼

Increase

Horizon Length

Decrease

Horizon Length

YesNo

14

MPC in Action – An Example

Time

Past

15

MPC in Action – An Example

Time𝐻 = 4

Past

Search order

(2, 1, 4, 5, 3, 6)

16

MPC in Action – An Example

Time𝐻 = 4

Past

Past

Performance

Future Execution PatternPerf.

Tracker

MPC

Optimizer

Optimizer

Search order

(2, 1, 4, 5, 3, 6)

17

MPC in Action – An Example

Time𝐻 = 4

Past

Past

Performance

Future Execution PatternPerf.

Tracker

MPC

Optimizer

Optimizer

Search order

(2, 1, 4, 5, 3, 6)2
B

18

MPC in Action – An Example

Time𝐻 = 4

Past

Past

Performance

Future Execution PatternPerf.

Tracker

MPC

Optimizer

Optimizer

Search order

(2, 1, 4, 5, 3, 6)2 1
A B

19

MPC in Action – An Example

Time𝐻 = 4

Past

Past

Performance

Future Execution Pattern

Setting for kernel 1 applied

Perf.

Tracker

MPC

Optimizer

Optimizer

Search order

(2, 1, 4, 5, 3, 6)2 1
A B

A

20

MPC in Action – An Example

Time𝐻 = 5

Past

Updated

Past

Performance

Updated

Future Execution Pattern

Search order

(2, 1, 4, 5, 3, 6)

AA
A

Optimizer

Perf.

Tracker

MPC

Optimizer

21

MPC in Action – An Example

Time𝐻 = 5

Past

Updated

Past

Performance

Updated

Future Execution Pattern

Search order

(2, 1, 4, 5, 3, 6)2
C

AA
A

Optimizer

Perf.

Tracker

MPC

Optimizer

22

MPC in Action – An Example

Time𝐻 = 5

Past

Updated

Past

Performance

Updated

Future Execution Pattern

Setting for kernel 2 applied

Search order

(2, 1, 4, 5, 3, 6)2
C

A
CA

A

Optimizer

Perf.

Tracker

MPC

Optimizer

23

MPC in Action – An Example

Time𝐻 = 5

Past

Updated

Past

Performance

Updated

Future Execution Pattern

Setting for kernel 2 applied

Search order

(2, 1, 4, 5, 3, 6)2
C

A
CA

A

Optimizer

Perf.

Tracker

MPC

Optimizer

24

Experimental Testbed

 AMD A10-7850K APU

• 2 out-of-order dual core CPUs

• GPU contains 512 processing elements (8 CUs) at

720 MHz

 DVFS states

 Total HW configuration: 336

NB and GPU share the same voltage rail

CPU P States Voltage (V) Freq (GHz)

P1 1.325 3.9

P2 1.3125 3.8

P3 1.2625 3.7

P4 1.225 3.5

P5 1.0625 3

P6 0.975 2.4

P7 0.8875 1.7

NB P States Freq (GHz)

Memory

Freq (MHz)

NB0 1.8 800

NB1 1.6 800

NB2 1.4 800

NB3 1.1 333

GPU P States Voltage (V) Freq (GHz)

DPM0 0.95 351

DPM1 1.05 450

DPM2 1.125 553

DPM3 1.1875 654

DPM4 1.225 720

25

Experimental Setup

 15 GPGPU Benchmarks

 Baseline scheme

• AMD Turbo Core

 Predict Previous Kernel (PPK)

• Assume last kernel repeats

• State-of-the-art: Harmonia ISCA’15,

McLaughlin et al. ASBD’14

 Maximum overhead 𝛼 = 5%

Category Benchmarks Benchmark Suite
Regular

Expression

Regular

mandelbulbGPU Phoronix A20

Nbody AMD APP SDK A10

juliaGPU Phoronix A10

Irregular

with

repetitive

pattern

EigenValue AMD APP SDK (AB)5

XSBench Exascale (ABC)2

Irregular

with non-

repetitive

pattern

Spmv SHOC A10B10C10

Kmeans Rodinia AB20

Irregular

with

kernels

varying

with input

swat OpenDwarfs

Complex

pattern

color Pannotia

pb-bfs Parboil

mis Pannotia

srad Rodinia

lulesh Exascale

lud Rodinia

hybridsort Rodinia

26

Energy-Performance Gains

0.6

0.7

0.8

0.9

1

1.1

R
e
la

ti
v

e

P
e
rf

o
rm

a
n

c
e

0

10

20

30

40

50

60

E
n

e
rg

y
 S

a
v
in

g
s
 (

%
) Predict Previous Kernel MPC

27

Energy-Performance Gains

0.6

0.7

0.8

0.9

1

1.1

R
e
la

ti
v

e

P
e
rf

o
rm

a
n

c
e

0

10

20

30

40

50

60

E
n

e
rg

y
 S

a
v
in

g
s
 (

%
) Predict Previous Kernel MPC

24.8%

-1.8%

28

Energy-Performance Gains

0.6

0.7

0.8

0.9

1

1.1

R
e
la

ti
v

e

P
e
rf

o
rm

a
n

c
e

0

10

20

30

40

50

60

E
n

e
rg

y
 S

a
v
in

g
s
 (

%
) Predict Previous Kernel MPC

24.8%

-1.8%

-10%

19.5%

29

MPC Overhead

0

0.2

0.4

0.6

M
P

C
 E

n
e
rg

y

O
v
e
rh

e
a
d

 (
%

)

0

0.4

0.8

1.2

M
P

C
 P

e
rf

o
rm

a
n

c
e

O
v
e
rh

e
a
d

 (
%

)

-20

20

60

100

%
 A

v
g

.
H

o
ri

z
o

n

L
e
n

g
th

30

MPC Overhead

0

0.2

0.4

0.6

M
P

C
 E

n
e
rg

y

O
v
e
rh

e
a
d

 (
%

)

0

0.4

0.8

1.2

M
P

C
 P

e
rf

o
rm

a
n

c
e

O
v
e
rh

e
a
d

 (
%

)

0.2%

0.3%

-20

20

60

100

%
 A

v
g

.
H

o
ri

z
o

n

L
e
n

g
th

31

Ramification of Prediction Inaccuracy

 RF: 12% Power, 25% Perf

 15% Power, 10% Perf: Wu et al. [HPCA 2015]

 5% Power, 5% Perf: Paul et al. [ISCA 2015]

0.8

0.9

1

1.1

1.2

1.3

R
e
la

ti
v
e

P
e
rf

o
rm

a
n

c
e

0

20

40

60

80

E
n

e
rg

y
 S

a
v
in

g
s
 (

%
) RF 15% Power, 10% Perf 5% Power, 5% Perf Perfect

32

Conclusions

 MPC looks into the future to determine the best configuration
for the current optimization time step

 Though effective in many domains, overheads far too high for
short timescales of dynamic power management

 We devise an approximation of MPC that dramatically
improves GPGPU energy-efficiency with orders of magnitude
lower overhead

 Our approach reduces energy by 24.8% with only a 1.8%
performance impact

Questions

Backup Slides

35

Performance-aware Power Management

 Optimum node-level power efficiency is a complex function of SOC configuration,

workload characteristics, programming model, and node-level objective/constraints

36

Performance-aware Power Management

 Optimum node-level power efficiency is a complex function of SOC configuration,

workload characteristics, programming model, and node-level objective/constraints

P
e

rf
o
rm

a
n
c
e

HW Knobs: DVFS states of CPU, GPU, NB etc.

Watt

37

Performance-aware Power Management

 Optimum node-level power efficiency is a complex function of SOC configuration,

workload characteristics, programming model, and node-level objective/constraints

P
e

rf
o
rm

a
n
c
e

HW Knobs: DVFS states of CPU, GPU, NB etc.

Watt Time-varying Workload

Non-linear power vs. performance curves

38

Performance-aware Power Management

 Optimum node-level power efficiency is a complex function of SOC configuration,

workload characteristics, programming model, and node-level objective/constraints

P
e

rf
o
rm

a
n
c
e

HW Knobs: DVFS states of CPU, GPU, NB etc.

Watt

User Application

Host

Tasks
GPU

Tasks

Programming Model

Time-varying Workload

Non-linear power vs. performance curves

39

Performance-aware Power Management

 Optimum node-level power efficiency is a complex function of SOC configuration,

workload characteristics, programming model, and node-level objective/constraints

P
e

rf
o
rm

a
n
c
e

HW Knobs: DVFS states of CPU, GPU, NB etc.

Watt

User Application

Host

Tasks
GPU

Tasks

Programming Model

Time-varying Workload

Non-linear power vs. performance curves

40

Performance-aware Power Management

 Optimum node-level power efficiency is a complex function of SOC configuration,

workload characteristics, programming model, and node-level objective/constraints

P
e

rf
o
rm

a
n
c
e

HW Knobs: DVFS states of CPU, GPU, NB etc.

Watt

User Application

Host

Tasks
GPU

Tasks

Programming Model

Time-varying Workload

Reduce energy of the GPGPU kernel phase while performing better than a target

Non-linear power vs. performance curves

41

Model Predictive Control (MPC)

 MPC looks into the future to determine the best configuration
for the current optimization time step

 Though effective in many domains, overheads far too high for
short timescales of dynamic power management

 Our approach: An approximation of MPC that
dramatically improves GPGPU energy-efficiency
with orders of magnitude lower overhead

Horizon H

Current

timestep
Shift horizon

42

Dynamic GPGPU Power Management

 CPU and GPU consume significant power in servers

 Previous approaches to dynamic power management are
locally predictive and ignore future kernel behavior

• Performance loss or wasted energy

43

Dynamic GPGPU Power Management

 CPU and GPU consume significant power in servers

 Previous approaches to dynamic power management are
locally predictive and ignore future kernel behavior

• Performance loss or wasted energy

Model Predictive Control

Proactively looks ahead into the future

44

Dynamic GPGPU Power Management

 CPU and GPU consume significant power in servers

 Previous approaches to dynamic power management are
locally predictive and ignore future kernel behavior

• Performance loss or wasted energy

 Applying MPC is challenging for short timescales of dynamic
power management

Model Predictive Control

Proactively looks ahead into the future

45

Dynamic GPGPU Power Management

 CPU and GPU consume significant power in servers

 Previous approaches to dynamic power management are
locally predictive and ignore future kernel behavior

• Performance loss or wasted energy

 Applying MPC is challenging for short timescales of dynamic
power management

 Goal: Approximations to MPC that save GPGPU energy
within the timescales of a typical server operation without
degrading performance

Model Predictive Control

Proactively looks ahead into the future

46

Dynamic GPGPU Power Management

 Goal: Reduce GPGPU energy within the timescales of a
typical server operation without degrading performance

 Computationally Intensive

• NP-Hard

• Challenging for short timescales of dynamic power management

 Idea: Improve energy efficiency by looking into future phases

• Model Predictive Control (MPC)

• Dynamically vary computation to limit performance overhead

47

Traditional Energy Management

 Static

• Predefined set of decisions

 Reactive

• Act after sensing a change in behavior

 Locally Predictive

• Predict the immediate behavior

48

Traditional Energy Management

 Static

• Predefined set of decisions

 Reactive

• Act after sensing a change in behavior

 Locally Predictive

• Predict the immediate behavior

Performance loss

or wasted energy

49

Traditional Energy Management

 Static

• Predefined set of decisions

 Reactive

• Act after sensing a change in behavior

 Locally Predictive

• Predict the immediate behavior

Performance loss

or wasted energy

Proactive Energy Management

Adapt from past and look-ahead into the future

50

Motivating Future Awareness

51

Motivating Future Awareness

 Baseline

• AMD Turbo Core

 Hardware Knobs

• DVFS states, GPU CUs

52

Motivating Future Awareness

 Baseline

• AMD Turbo Core

 Hardware Knobs

• DVFS states, GPU CUs

 Predict Previous Kernel (PPK):

• Assume last kernel repeats

• State-of-the-art: Harmonia ISCA’15,

McLaughlin et al. ASBD’14

 Theoretically Optimal (TO):

• Perfect knowledge of future

• Impractical

53

Motivating Future Awareness

 Baseline

• AMD Turbo Core

 Hardware Knobs

• DVFS states, GPU CUs

 Predict Previous Kernel (PPK):

• Assume last kernel repeats

• State-of-the-art: Harmonia ISCA’15,

McLaughlin et al. ASBD’14

 Theoretically Optimal (TO):

• Perfect knowledge of future

• Impractical

-20

0

20

40

60

80

E
n

e
rg

y
 S

a
v
in

g
s
 (

%
)

Predict Previous Kernel Theoretically Optimal

0.4

0.6

0.8

1

1.2

1.4

1.6
S

p
e
e
d

u
p

54

Motivating Future Awareness

 Baseline

• AMD Turbo Core

 Hardware Knobs

• DVFS states, GPU CUs

 Predict Previous Kernel (PPK):

• Assume last kernel repeats

• State-of-the-art: Harmonia ISCA’15,

McLaughlin et al. ASBD’14

 Theoretically Optimal (TO):

• Perfect knowledge of future

• Impractical

-20

0

20

40

60

80

E
n

e
rg

y
 S

a
v
in

g
s
 (

%
)

Predict Previous Kernel Theoretically Optimal

0.4

0.6

0.8

1

1.2

1.4

1.6
S

p
e
e
d

u
p

50%

46%

55

Ramifications of Ignoring Future

 Spmv

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30

N
o
rm

a
liz

e
d
 k

e
rn

e
l

p
e
rf

o
rm

a
n
c
e

Kernel Execution Order

Baseline PPK Target

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 5 10 15 20 25 30

R
u
n
ti
m

e
 S

p
e
e
d
u
p

Kernel Execution Order

Baseline PPK Target

56

Ramifications of Ignoring Future

 Spmv

Performance

Loss

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30

N
o
rm

a
liz

e
d
 k

e
rn

e
l

p
e
rf

o
rm

a
n
c
e

Kernel Execution Order

Baseline PPK Target

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 5 10 15 20 25 30

R
u
n
ti
m

e
 S

p
e
e
d
u
p

Kernel Execution Order

Baseline PPK Target

PPK lowers

performance

57

Ramifications of Ignoring Future

 Spmv

Performance

Loss

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30

N
o
rm

a
liz

e
d
 k

e
rn

e
l

p
e
rf

o
rm

a
n
c
e

Kernel Execution Order

Baseline PPK Target

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 5 10 15 20 25 30

R
u
n
ti
m

e
 S

p
e
e
d
u
p

Kernel Execution Order

Baseline PPK Target

PPK lowers

performance

Avoid

performance

slowdown

Look ahead

58

Ramifications of Ignoring Future

 Kmeans

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

N
o
rm

a
liz

e
d
 k

e
rn

e
l

p
e
rf

o
rm

a
n
c
e

Kernel Execution Order

Kernel Performance Runtime Speedup Target

59

Ramifications of Ignoring Future

 Kmeans

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

N
o
rm

a
liz

e
d
 k

e
rn

e
l

p
e
rf

o
rm

a
n
c
e

Kernel Execution Order

Kernel Performance Runtime Speedup Target

PPK spends lot of

energy

60

Ramifications of Ignoring Future

 Kmeans

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

N
o
rm

a
liz

e
d
 k

e
rn

e
l

p
e
rf

o
rm

a
n
c
e

Kernel Execution Order

Kernel Performance Runtime Speedup Target

0

10

20

30

40

50

60

70

0 5 10 15 20

R
u
n

ti
m

e
 E

n
e
rg

y
 S

a
v
in

g
s
 (

%
)

Kernel Execution Order

PPK TO

PPK spends lot of

energy

61

Ramifications of Ignoring Future

 Kmeans

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

N
o
rm

a
liz

e
d
 k

e
rn

e
l

p
e
rf

o
rm

a
n
c
e

Kernel Execution Order

Kernel Performance Runtime Speedup Target

0

10

20

30

40

50

60

70

0 5 10 15 20

R
u
n

ti
m

e
 E

n
e
rg

y
 S

a
v
in

g
s
 (

%
)

Kernel Execution Order

PPK TO

PPK spends lot of

energy

Look ahead Catch up on

performance

62

Background

 Typical GPGPU application phase

…CPU

D
A

TA
TR

A
N

SF
ER

GPU Kernel

CPU

D
A

TA
TR

A
N

SF
ER

CPU

D
A

TA
TR

A
N

SF
ER

GPU
Kernel

CPU

D
A

TA
TR

A
N

SF
ER

CPU

Time

63

Kernel Performance Scaling

Energy-optimal configuration differ across kernels

64

Model Predictive Control (MPC)

 General Idea
Horizon H

Apply here

65

Model Predictive Control (MPC)

 General Idea
Horizon H

Apply here

66

Model Predictive Control (MPC)

 General Idea

 MPC Components

• Accurate system model

• Future input forecast

• Optimization

Horizon H

Apply here

67

Model Predictive Control (MPC)

 General Idea

 MPC Components

• Accurate system model

• Future input forecast

• Optimization

Horizon H

Apply here

Power and performance prediction model

Kernel pattern extractor

Greedy and heuristic based optimizer

68

Feedback-based Performance Tracker

Performance

met

previously?

Optimize Aggressively

Reduce energy

Avoid performance loss

Relax optimization

Spend energy

Reduce performance

loss

YesNo

 Switch the optimization goal based
on past performance and the target

69

Performance Power Model

Kernel

HW

setting

Performance

Power Model

Performance Tracker
Performance

Feedback

MPC Optimizer

Optimizer

Performance

Power

Perf.

Counters of

Future

Kernels

Kernel

Pattern

Extractor

Performance

Counters

Performance

Target

Adaptive Horizon Generator

Horizon LengthOptimization Overhead

Max Overhead

 Trained offline using Random Forest Learning Algorithm

 Estimates performance and power for any HW configuration

70

Kernel Pattern Extractor

Kernel

HW

setting

Performance

Power Model

Performance Tracker
Performance

Feedback

MPC Optimizer

Optimizer

Performance

Power

Perf.

Counters of

Future

Kernels

Kernel

Pattern

Extractor

Performance

Counters

Performance

Target

Adaptive Horizon Generator

Horizon LengthOptimization Overhead

Max Overhead

 Extracts kernel execution pattern upon the first encounter

 Stores the performance counters of dissimilar kernels and retunes it

71

MPC Optimizer

 Greedy Hill Climbing optimization

• Using the predictor, select the HW knob with highest energy sensitivity

• Search for low energy configuration using hill climbing

72

MPC Optimizer

 Greedy Hill Climbing optimization

• Using the predictor, select the HW knob with highest energy sensitivity

• Search for low energy configuration using hill climbing

CPU DVFS NB DVFS GPU DVFS GPU CU

73

MPC Optimizer

 Greedy Hill Climbing optimization

• Using the predictor, select the HW knob with highest energy sensitivity

• Search for low energy configuration using hill climbing

CPU DVFS NB DVFS GPU DVFS GPU CU

P
re

d
ic

te
d
 E

n
e
rg

y

GPU DVFS states

74

MPC Optimizer

 Greedy Hill Climbing optimization

• Using the predictor, select the HW knob with highest energy sensitivity

• Search for low energy configuration using hill climbing

CPU DVFS NB DVFS GPU DVFS GPU CU

P
re

d
ic

te
d
 E

n
e
rg

y

GPU DVFS states

Hill climbing

75

MPC Optimizer

 Greedy Hill Climbing optimization

• Using the predictor, select the HW knob with highest energy sensitivity

• Search for low energy configuration using hill climbing

CPU DVFS NB DVFS GPU DVFS GPU CU

P
re

d
ic

te
d
 E

n
e
rg

y

GPU CU count

Hill climbing

76

MPC Optimizer

 Greedy Hill Climbing optimization

• Using the predictor, select the HW knob with highest energy sensitivity

• Search for low energy configuration using hill climbing

CPU DVFS NB DVFS GPU DVFS GPU CU

P
re

d
ic

te
d
 E

n
e
rg

y

GPU CU count

Hill climbing

20× cost

reduction over

exhaustive

77

MPC Optimizer

78

MPC Optimizer

Greedy Hill Climbing optimization
• Select the HW knob with highest energy sensitivity and search for low energy

configuration using hill climbing

79

MPC Optimizer

Greedy Hill Climbing optimization
• Select the HW knob with highest energy sensitivity and search for low energy

configuration using hill climbing

MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high performing kernels first

• Search cost becomes polynomial

80

MPC Optimizer

0

1

2

3

4

1 2 3 4 5 6

P
e
rf

o
rm

a
n

c
e

n

o
rm

a
li

z
e
d

 t
o

 t
a

rg
e
t

Kernel Execution Order

Kernel Throughput Runtime ThroughputPerformance Performance

Greedy Hill Climbing optimization
• Select the HW knob with highest energy sensitivity and search for low energy

configuration using hill climbing

MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high performing kernels first

• Search cost becomes polynomial

81

MPC Optimizer

0

1

2

3

4

1 2 3 4 5 6

P
e
rf

o
rm

a
n

c
e

n

o
rm

a
li

z
e
d

 t
o

 t
a

rg
e
t

Kernel Execution Order

Kernel Throughput Runtime Throughput

(Low Performance)

Optimize Second

(High Performance)

Optimize First

Performance Performance

Greedy Hill Climbing optimization
• Select the HW knob with highest energy sensitivity and search for low energy

configuration using hill climbing

MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high performing kernels first

• Search cost becomes polynomial

82

MPC Optimizer

0

1

2

3

4

1 2 3 4 5 6

P
e
rf

o
rm

a
n

c
e

n

o
rm

a
li

z
e
d

 t
o

 t
a

rg
e
t

Kernel Execution Order

Kernel Throughput Runtime Throughput

(Low Performance)

Optimize Second

(High Performance)

Optimize First

Performance Performance

(3, 2, 1, 6, 5, 4)

Greedy Hill Climbing optimization
• Select the HW knob with highest energy sensitivity and search for low energy

configuration using hill climbing

MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high performing kernels first

• Search cost becomes polynomial

83

MPC Optimizer

0

1

2

3

4

1 2 3 4 5 6

P
e
rf

o
rm

a
n

c
e

n

o
rm

a
li

z
e
d

 t
o

 t
a

rg
e
t

Kernel Execution Order

Kernel Throughput Runtime Throughput

(Low Performance)

Optimize Second

(High Performance)

Optimize First

65× reduction in

cost evaluation

Performance Performance

(3, 2, 1, 6, 5, 4)

Greedy Hill Climbing optimization
• Select the HW knob with highest energy sensitivity and search for low energy

configuration using hill climbing

MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high performing kernels first

• Search cost becomes polynomial

84

MPC Optimizer

85

MPC Optimizer

MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high performing kernels first

• Search cost becomes polynomial

86

MPC Optimizer

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6P
e
rf

o
rm

a
n

c
e

 n
o

rm
a
li
z
e
d

 t
o

ta

rg
e
t

Kernel Execution Order

Kernel Throughput Runtime ThroughputPerformance Performance

MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high performing kernels first

• Search cost becomes polynomial

87

MPC Optimizer

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6P
e
rf

o
rm

a
n

c
e

 n
o

rm
a
li
z
e
d

 t
o

ta

rg
e
t

Kernel Execution Order

Kernel Throughput Runtime Throughput

(Low Performance)

Optimize Second

(High Performance)

Optimize First

Performance Performance

MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high performing kernels first

• Search cost becomes polynomial

88

MPC Optimizer

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6P
e
rf

o
rm

a
n

c
e

 n
o

rm
a
li
z
e
d

 t
o

ta

rg
e
t

Kernel Execution Order

Kernel Throughput Runtime Throughput

(Low Performance)

Optimize Second

(High Performance)

Optimize First

Performance Performance

(3, 2, 1, 6, 5, 4)

MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high performing kernels first

• Search cost becomes polynomial

89

MPC Optimizer

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6P
e
rf

o
rm

a
n

c
e

 n
o

rm
a
li
z
e
d

 t
o

ta

rg
e
t

Kernel Execution Order

Kernel Throughput Runtime Throughput

(Low Performance)

Optimize Second

(High Performance)

Optimize First

65× cost

reduction
Performance Performance

(3, 2, 1, 6, 5, 4)

MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high performing kernels first

• Search cost becomes polynomial

90

Adaptive Horizon Generator

MPC runs between kernel invocations

91

Adaptive Horizon Generator

MPC runs between kernel invocations

Kernels

MPC

𝛼

92

Adaptive Horizon Generator

MPC runs between kernel invocations

 Longer horizon increases MPC optimization time

 Limit the overhead 𝛼 by dynamically varying the horizon length

Kernels

MPC

𝛼

93

Adaptive Horizon Generator

MPC runs between kernel invocations

 Longer horizon increases MPC optimization time

 Limit the overhead 𝛼 by dynamically varying the horizon length

 General Idea:

Kernels

MPC

𝛼

(𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑖 − 1 𝑘𝑒𝑟𝑛𝑒𝑙𝑠) + (𝐸𝑠𝑡.𝑀𝑃𝐶 𝑂𝑝𝑡. 𝑇𝑖𝑚𝑒) + (𝐸𝑠𝑡. 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑘𝑒𝑟𝑛𝑒𝑙 𝑖)

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑖 𝑘𝑒𝑟𝑛𝑒𝑙𝑠
≤ 1 + 𝛼

94

Adaptive Horizon Generator

MPC runs between kernel invocations

 Longer horizon increases MPC optimization time

 Limit the overhead 𝛼 by dynamically varying the horizon length

 General Idea:

Kernels

MPC

𝛼

(𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑖 − 1 𝑘𝑒𝑟𝑛𝑒𝑙𝑠) + (𝐸𝑠𝑡.𝑀𝑃𝐶 𝑂𝑝𝑡. 𝑇𝑖𝑚𝑒) + (𝐸𝑠𝑡. 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑘𝑒𝑟𝑛𝑒𝑙 𝑖)

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑖 𝑘𝑒𝑟𝑛𝑒𝑙𝑠
≤ 1 + 𝛼

95

Dynamic GPGPU Power Mgmt. Formulation

 Minimize energy over 𝑁 GPU kernels such that the
performance target is met

𝑆 = 𝑐𝑝𝑢 × 𝑛𝑏 × 𝑔𝑝𝑢 × 𝑐𝑢

96

Theoretically Optimal

 GLPK to solve the Integer Linear Programming (ILP)
formulation

97

Predict Previous Kernel (PPK)

 Minimize energy of kernel 𝑖 such that the runtime
performance so far exceeds the target

98

MPC-based GPGPU Power Manager

 Optimize energy for next 𝐻 kernels such that the runtime
performance at the end of 𝐻 kernels exceeds the target

99

Runtime Performance Tracker

 Performance requirement of kernel, 𝑘, is enforced as follows:

 Kernel time headroom is updated according to:

100

Feedback-based Performance Tracker

Performance

met

previously?

Optimize Aggressively

Reduce energy

Avoid performance loss

Relax optimization

Spend energy

Reduce performance

loss

YesNo

101

MPC Optimizer

102

MPC Optimizer

 Greedy Hill Climbing optimization
• Select the HW knob with highest energy sensitivity and search

for low energy configuration using hill climbing

103

MPC Optimizer

 Greedy Hill Climbing optimization
• Select the HW knob with highest energy sensitivity and search

for low energy configuration using hill climbing

 MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing

kernels first

– Low to high performance (e.g. Kmeans): Optimize high

performing kernels first

• Search cost becomes polynomial

 65X average reduction in total cost evaluations

An Example

 Search order = (2, 1, 4, 5, 3)

H

104

MPC Optimizer

An Example

 Search order = (2, 1, 4, 5, 3)

H

2

 Greedy Hill Climbing optimization
• Select the HW knob with highest energy sensitivity and search

for low energy configuration using hill climbing

 MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing

kernels first

– Low to high performance (e.g. Kmeans): Optimize high

performing kernels first

• Search cost becomes polynomial

 65X average reduction in total cost evaluations

105

MPC Optimizer

An Example

 Search order = (2, 1, 4, 5, 3)

H

Apply here

2 1

 Greedy Hill Climbing optimization
• Select the HW knob with highest energy sensitivity and search

for low energy configuration using hill climbing

 MPC Search Heuristic
• Determine a static order requiring no backtracking

• General Idea
– High to low performance (e.g. Spmv): Optimize low performing

kernels first

– Low to high performance (e.g. Kmeans): Optimize high

performing kernels first

• Search cost becomes polynomial

 65X average reduction in total cost evaluations

106

MPC Optimizer

 Greedy hill climbing optimization

• Greedy: Select the HW knob with highest energy

sensitivity

• Hill Climbing: Continue finding low energy

configuration (within perf target), and stop

• Reduces search cost by 20X

 MPC Search Heuristic

• Determine a static order requiring no backtracking

• General Idea

– High to low performance (e.g. Spmv): Optimize low

performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high

performing kernels first

• Search becomes polynomial

An Example

 Search order = (2, 1, 4, 5, 3)

H

107

MPC Optimizer

 Greedy hill climbing optimization

• Greedy: Select the HW knob with highest energy

sensitivity

• Hill Climbing: Continue finding low energy

configuration (within perf target), and stop

• Reduces search cost by 20X

 MPC Search Heuristic

• Determine a static order requiring no backtracking

• General Idea

– High to low performance (e.g. Spmv): Optimize low

performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high

performing kernels first

• Search becomes polynomial

An Example

 Search order = (2, 1, 4, 5, 3)2

H

Apply here

108

MPC Optimizer

 Greedy hill climbing optimization

• Greedy: Select the HW knob with highest energy

sensitivity

• Hill Climbing: Continue finding low energy

configuration (within perf target), and stop

• Reduces search cost by 20X

 MPC Search Heuristic

• Determine a static order requiring no backtracking

• General Idea

– High to low performance (e.g. Spmv): Optimize low

performing kernels first

– Low to high performance (e.g. Kmeans): Optimize high

performing kernels first

• Search becomes polynomial

 Average reduction in total cost evaluations: 65X

An Example

 Search order = (2, 1, 4, 5, 3)2

H

Apply here

109

GPGPU Benchmarks

Category Benchmarks Benchmark Suite Regular Expression

Regular

mandelbulbGPU Phoronix A20

Nbody AMD APP SDK A10

juliaGPU Phoronix A10

Irregular with

repetitive pattern

EigenValue AMD APP SDK (AB)5

XSBench Exascale (ABC)2

Irregular with non-

repetitive pattern

Spmv SHOC A10B10C10

Kmeans Rodinia AB20

Irregular with

kernels varying

with input

swat OpenDwarfs

Complex pattern

color Pannotia

pb-bfs Parboil

mis Pannotia

srad Rodinia

lulesh Exascale

lud Rodinia

hybridsort Rodinia

110

Experimental Testbed (Detailed)

 AMD A10-7850K APU

• 2 out-of-order dual core CPUs

• GPU contains 512 processing elements (8 CUs) at

720 MHz

– Each CU has 4 SIMD Vector Units

– 16 PEs per SIMD vector unit

 DVFS states NB and GPU share the same voltage rail
CPU P States Voltage (V) Freq (GHz)

P1 1.325 3.9

P2 1.3125 3.8

P3 1.2625 3.7

P4 1.225 3.5

P5 1.0625 3

P6 0.975 2.4

P7 0.8875 1.7

NB P States Freq (GHz)

Memory

Freq (MHz)

NB0 1.8 800

NB1 1.6 800

NB2 1.4 800

NB3 1.1 333

GPU P States Voltage (V) Freq (GHz)

DPM0 0.95 351

DPM1 1.05 450

DPM2 1.125 553

DPM3 1.1875 654

DPM4 1.225 720

 GPU CUs and DVFS states changed in multiples of 2

 Total HW configuration: 336

111

Experimental Setup

 15 GPGPU Benchmarks

• Sampled from 73 benchmarks

• 75% irregular

• 44% vary with input

 Baseline scheme

• AMD Turbo Core

 Algorithms

• PPK

• MPC

• TO

 Results based on real hardware traces

Category Benchmarks

Benchmark

Suite Regular Expression

Regular

mandelbulbGPU Phoronix A20

Nbody AMD APP SDK A10

juliaGPU Phoronix A10

Irregular

with

repetitive

pattern

EigenValue AMD APP SDK (AB)5

XSBench Exascale (ABC)2

Irregular

with non-

repetitive

pattern

Spmv SHOC A10B10C10

Kmeans Rodinia AB20

Irregular

with kernels

varying with

input

swat OpenDwarfs

Complex pattern

color Pannotia

pb-bfs Parboil

mis Pannotia

srad Rodinia

lulesh Exascale

lud Rodinia

hybridsort Rodinia

112

Polynomial MPC w/ Theoretical Optimal

-10

10

30

50

70

En
er

gy
 S

av
in

gs
 (

%
)

MPC Theoretically Optimal

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

Sp
ee

d
u

p

113

Polynomial MPC w/ Theoretical Optimal

-10

10

30

50

70

En
er

gy
 S

av
in

gs
 (

%
)

MPC Theoretically Optimal

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

Sp
ee

d
u

p

92%

93%

114

GPU Energy Savings

-40

-30

-20

-10

0

10

20

30

40

50

60

G
P

U
 E

n
e

rg
y
 S

a
v
in

g
s
 (

%
)

Predicted Previous Kernel MPC

115

MPC Energy-Performance w.r.t PPK

-5

0

5

10

15

20

E
n

e
rg

y
 S

a
v
in

g
s
 (

%
)

0.8

0.9

1

1.1

1.2

1.3

S
p

e
e

d
u

p

116

Amortization of Initial Loses

-5

0

5

10

15

20

E
n

e
rg

y
 S

a
v
in

g
s
 (

%
)

1 10 100 Steady state

0.8

0.9

1

1.1

1.2

1.3

S
p

e
e
d

u
p

117

Final Takeaway

 MPC is a versatile scheme

• Does not hurt gains of regular benchmarks

• Improves energy savings

• Reduces performance loss

 Online MPC reduces performance loss compared to
traditional approaches

 Online MPC is resilient to prediction inaccuracy due to

• Performance feedback

• MPC’s greedy and heuristic approximations depend minimally
on prediction models

