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'&f Microsoft PowerPaoint L&J

E Microsoft PowerPoint has stopped working

Windows can check online for a selution to the problem and try to restart the
prograrn,

# Check online for a solution and restart the program

< Restart the program

() View problem details
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from the might-want-to-just-trademark-that-term dept.

Global Spam Drops by a Third After Rustock Botnet
Gets Crushed, Symantec Says

By SecurityWeek News on March 29, 2011

Stuxnet attackers used 4 Windows
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Example of a Modern Bug

If(ptr == NULL) {
en=thread_local->mylen,;
ptr=malloc(len);
memcpy(ptr, data, len);

}
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‘ Example of a Modern Bug

TIME
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Thread 2
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Example of a Modern Bug

Thread 1 Thread 2

mylen=small mylen=large

| memcpy(ptr, data2, len2)

-— ptr [ ]
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Dynamic Software Analyses

Analyze the program as it runs
+ FInd errors on any executed path
-LARGE overheads, only test one path at a time

Data Race Detection = Taint Analysis
(e.g. Inspector XE)

2-300x 2-200X
Memory Checking Dynamic Bounds
(e.g. MemCheck) Checking

5-50x 2-80X




Goals of this Thesis

Allow high quality dynamic software analyses
a Find difficult bugs that weaker analyses miss

Distribute the tests to large populations
o Must be low overhead or users will get angry

Sampling + Hardware to accomplished this
o Each user only tests a small part of the program
o Each test should be helped by hardware
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Outline

Problem Statement

Distributed Dynamic Dataflow Analysis

Demand-Driven Data Race Detection

Unlimited Watchpoints
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Distributed Dynamic Dataflow Analysis

= Split analysis across large populations

o Observe more runtime states
o Report problems developer never thought to test

’F SomeProgram

SomeProgram has encountered a problem and needs to close. We are somy
for the inconvenience.

if you were in the middle of something, the information you were working on might be: lost.

Please tell Microsoft about this problem.
We have created an emor report that you can send to help us improve SomeProgram. We
will treat this report as corfidential and anorymous.

What data does this emor report contain?

Why should | report to Microsoft 7

Debug
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Distributed Dynamic Dataflow Analysis

= Split analysis across large populations
a Observe more runtime states
o Report problems developer never thought to test
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The Problem: OVERHEADS

= Analyze the program as it runs
+ System state, find errors on any executed path
— LARGE runtime overheads, only test one path

s Data Race Detection = Taint Analysis
(e.g. Thread Analyzer) (e.g.TaintCheck)

2-300x 2-200x '

s Memory Checking s Dynamic Bounds
(e.g. MemCheck) Checking

5-50x 2-80x '

M :




Current Options Limited

75

50

25

Error Detection Rate

100 ]
|
|
I
|
|
|
|
|
|
|
|
|
|

ol

Overhead
No Complete
Analysis Analysis

14



Solution: Sampling

Lower overheads by skipping some analyses
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‘Sampling Allows Distribution

= Lower overheads mean more users
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‘ Sampling AHOWS Dlstrlbutlon

DL t‘i { t‘i, { t‘i,‘ e t‘i, { E‘i,‘

= Lower ove ;  ; £ i:isan more users
100

End Users

75

s19sn Aue

Beta Testers

50

Developers

25

Error Detection Rate

SEER

0
Overhead

No Complete

Analysis Analysis

16




‘ Sampling AHOWS Dlstrlbutlon
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Example Dynamic Datatlow Analysis
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Example Dynamic Datatlow Analysis
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Meta-data ‘
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‘ Example Dynamic Datatlow Analysis
| ] Data [ Input J

X = read_input() j{validate(X)J
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‘ Example Dynamic Datatlow Analysis
D Data [ Input J

[X;readﬂ_l’le;{ validate(x) J
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Sampling Datatlows

Sampling must be aware of meta-data
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‘ Datatlow Sampling
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Finding Meta-Data

No additional overhead when no meta-data
o Needs hardware support

Take a fault when touching shadowed data
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Finding Meta-Data

No additional overhead when no meta-data
o Needs hardware support

Take a fault when touching shadowed data
O Solution: Virtual Memory Watchpoints
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Prototype Setup

Xen+QEMU Taint analysis sampling system

a Network packets untrusted

/ Xen Hypervisor
/ Admin VM \ /OS and Applications\
Shadow Taint /A }[A } A \
PP PP |---| APP
Page et Analysis OHM \
Table Stack a N
QEMU :
\ ,, \ ; ‘ _// \ Linux
\_

~

)/

Performance Tests — Network Throughput
o Example: ssh_receive

Sampling Accuracy Tests
o Real-world Security Exploits




Performance ot Datatlow Sampling
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Accuracy with Background Tasks

ssh_receive running in background

= 100

;L ®m Apache
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Outline

Demand-Driven Data Race Detection
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Dynamic Data Race Detection

Add checks around every memory access
Find inter-thread sharing

Synchronization between write-shared
accesses?

o No? Data race.

25



SW Race Detection 1s Slow

PARSEC

Phoenix

—-— e ——mm

=300

u

1
)
L0
N

MO

P

1
o
o
N

MO

1
: i
% — _f I
o o
Lo 0
—i
IS EEan_ aoey

o O
L0

26



TIME

Inter-thread Sharing 1s What’s Important

If(ptr==NULL)
lenl=thread local->mylen;

ptr=malloc(lenl);

memcpy(ptr, datal, lenl)

If(ptr==NULL)
len2=thread local->mylen,;

ptr=malloc(len2);

memcpy(ptr, data2, len2)
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Very Little Dynamic Sharing
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‘ Run the Analysis On Demand

Multi-threaded

/ N
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‘ Run the Analysis On Demand
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Finding Inter-thread Sharing

Virtual Memory Watchpoints?
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‘ Finding Inter-thread Sharing

= Virtual Memory Watchpoints?
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‘ Finding Inter-thread Sharing

= Virtual Memory Watchpoints?

— ~100% of accesses cause page faults

= Granularity Gap
= Per-process not per-thread
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Hardware Sharing Detector
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Potential Accuracy & Perf. Problems

Limitations of Performance Counters
o Intel HITM only finds W—R Data Sharing

Limitations of Cache Events
o SMT sharing can’t be counted
o Cache eviction causes missed events

Events go through the kernel
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On-Demand Analysis on Real HW
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On-Demand Analysis on Real HW
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On-Demand Analysis on Real HW
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Performance Increases
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Outline

Unlimited Watchpoints
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Watchpoints Work for Many Analyses

Bounds Checking Data Race Detection
Taint Analysis Deterministic Execution
Transactional Speculative

Memory Parallelization
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Watchpoints Work for Many Analyses

Data Race Detection

Taint Analysis
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Watchpoint System Design

Store Ranges in Main Memory
Per-Thread Ranges, Per-Core Range Cache
Software Handler on RC miss or overflow

Write-back RC works as a write filter
Precise, user-level watchpoint faults

T1 Memory

T2 Memory

gt

Core l

Core 2

-

—
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Experimental Evaluation Setup

Trace-based timing simulator using Pin

Taint analysis on SPEC INT2000
Race Detection on Phoenix and PARSEC

Comparing only shadow value checks
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Future Directions

Dataflow Tests find bugs on executed code
o What about code that is never executed?

Sampling + Demand-Driven Race Detection
o Good synergy between the two, like taint analysis

Further watchpoint hardware studies:
o Clear microarchitectural analysis
o More software systems, different algorithms
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BACKUP SLIDES
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Finding Errors

Brute Force

o Code review, fuzz testing,
whitehat/grayhat hackers

— Time-consuming, difficult
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Finding Errors

Brute Force

o Code review, fuzz testing,
whitehat/grayhat hackers

— Time-consuming, difficult

: : Klocworik
Static Analysis |
o Automatically analyze source, FDRWTFY

formal reasoning, compiler checks drmmes ¢
I " PSREGgAlI'\JnI\ﬁN%
— Intractable, requires expert input, S

no system state ¥,
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Dynamic Datatlow Analysis
Associate meta-data with program values
Propagate/Clear meta-data while executing
Check meta-data for safety & correctness

Forms dataflows of meta/shadow information
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Results by Ho et al.

Imbench Best Case Results:

System Slowdown

Taint Analysis

101.7x

On-Demand Taint Analysis

1.98x

Results when everything is tainted:
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o
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ssh_receive
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Samphng AHOWS Distribution
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Cannot Naively Sample Code
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‘ Dataflow Sampling Example
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Benchmarks

Performance — Network Throughput
o Example: ssh_receive

Accuracy of Sampling Analysis
o Real-world Security Exploits

Name Error Description

Apache  Stack overflow in Apache Tomcat JK Connector
Eggdrop Stack overflow in Eggdrop IRC bot

Lynx Stack overflow in Lynx web browser

ProFTPD Heap smashing attack on ProFTPD Server
Squid Heap smashing attack on Squid proxy server
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Performance ot Datatlow Sampling (2)

o)
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P N W b
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Performance ot Datatlow Sampling (3)
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Accuracy at Very Low Overhead

Max time In analysis: 1% every 10 seconds

Always stop analysis after threshold
o Lowest probability of detecting exploits

Name Chance of Detecting Exploit
Apache 100%
Eggdrop 100%
Lynx 100%
ProFTPD 100%

Squid 100%




Accuracy with Background Tasks

netcat_receive running with benchmark

= 100

S m Apache

LLJ

= 80 “Eggdrop

E 60 W Lynx

g ® ProFTPD

5 40 ® Squid

)

=

g 20

L

O

S 0.3 0.4
10% 25% 50% 75% 90%

Maximum Allowed Overhead %
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Outline

Proposed Solutions

d
n Testudo: Hardware-Based Dataflow Sampling
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Virtual Memory Not Ideal
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Virtual Memory Not Ideal
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Word Accurate Meta-Data

o )
Data Cache
Pipeline
? >[ Word Accurate }
\_ Meta Data Cache

What happens when the cache overflows?
o Increase the size of main memory?
o Store into virtual memory?

Use Sampling to Throw Away Data
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On-Chip Sampling Mechanism

# of executions
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Usetul for Scaling to Complex Analyses

If each shadow operation uses 1000 instructions:
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Useful for Scaling to Complex Analyses

If each shadow operation uses 1000 instructions:
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TIME

Example of Data Race Detection

Thread 1

mylen=small

If(ptr==NULL)

lenl=thread_local->mylen;

ptr=malloc(lenl);

memcpy(ptr, datal, lenl)

Thread 2

mylen=large

If(ptr==NULL)

len2=thread local->mylen;

ptr=malloc(len2);

memcpy(ptr, data2, len2)
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Ien2—thread_local-%1ylen;

ptr=malloc(len2);

memcpy(ptr, data2, len2)
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TIME

Example of Data Race Detection

Thread 1 Thread 2
mylen=small mylen=large
Y if(ptr==NULL)
Y lenl=thread local->mylen;
(- = Y Interleaved

Y ptr=malloc(lend);

Synchronization?

Y\-memcpym

et D &

Ien2:thread_local-§1ylen;
ptr=malloc(len2);

memcpy(ptr, data2, len2)
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Demand-Driven Analysis Algorithm

Thread
Executes
Instruction

Synchro
Dperation?,

A

YES
¥

Mark All Data Unshared

v

Update Lamport Clocks

y

Jperation?,

NO

Shared
with another
thread?

NO

YES

v

Update
Lamport
Clocks

Run Software

Race
Detector

v

N
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‘ Demand-Driven Analysis on Real HW

B e —

Thread
Executes
Instruction

YES
¥

Update Lamport Clocks

Run Race
Detection

Causes
HITM?

Data Sharing
Recently?

Interrupt to
Kemnel

Disable
Analysis

Caused by

l

Enable
Analysis

l
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Demand-Driven Analysis Accuracy
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Demand-Driven Analysis Accuracy
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Accuracy on Real Hardware

B T 0 e e e ey

1/1 0/1 1/1 1/1
(100%)  (0%) (100%) (100%)

R—W i 0/1 2/2 2/2 1/1 3/3 1/1
(0%) (100%) (100%) (100%) (100%) (100%)

W—R i 2/2 1/1 2/2 1/1 3/3/ 1/1

(100%) (100%) (100%) (100%) (100%) (100%)

Spider Spider Spider NSPR-1 | Memcached-1 | Apache-1
Monkey-0 | Monkey-1 | Monkey-2

9/9 1/1 1/1 3/3 1/1
(100%)  (100%)  (100%)  (100%) (100%)

R—W 3/3 i 1/1 1/1 1/1 717
(100%) (100%)  (100%) (100%) (100%)

W—R 8/8 1/1 2/2 414 . 2/2

(100%)  (100%)  (100%)  (100%) (100%)
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Accuracy on Real Hardware
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(100%)  (100%)  (100%)  (100%) (100%)

R—W 3/3 i 1/1 1/1 1/1 717
(100%) (100%)  (100%) (100%) (100%)

W—R 8/8 1/1 2/2 414 . 2/2

(100%)  (100%)  (100%)  (100%) (100%)
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Hardware-Assisted Watchpoints

HW Interrupt when touching watched data
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Hardware-Assisted Watchpoints
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Hardware-Assisted Watchpoints

HW Interrupt when touching watched data
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‘ Hardware-Assisted Watchpoints

= HW Interrupt when touching watched data
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‘ Hardware-Assisted Watchpoints

= HW Interrupt when touching watched data
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Hardware-Assisted Watchpoints

HW Interrupt when touching watched data
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Hardware-Assisted Watchpoints

HW Interrupt when touching watched data

0 1 2 3 4 5 6 7
T 0
WR X—7

SW knows it's touching important data
o AT NO OVERHEAD

Normally used for debugging
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Existing Watchpoint Solutions

Watchpoint Registers
— Limited number (4-16), small reach (4-8 bytes)
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Existing Watchpoint Solutions

Watchpoint Registers
— Limited number (4-16), small reach (4-8 bytes)

Virtual Memory
— Coarse-grained, per-process, only aligned ranges

ECC Mangling
— Per physical address, all cores, no ranges

71



Meeting These Requirements

Unlimited Number of Watchpoints
a Store in memory, cache on chip

Fine-Grained
o Watch full virtual addresses

Per-Thread
o Watchpoints cached per core/thread
a TID Registers

Ranges
o Range Cache
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‘ The Need for Many Small Ranges

= Some watchpoints better suited for ranges

J

o 32b Addresses: 2 ranges x 64b each = 16B
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‘ The Need for Many Small Ranges

= Some watchpoints better suited for ranges

] |

o 32b Addresses: 2 ranges x 64b each = 16B
= Some need large # of small watchpoints

(i

o 51 ranges x 64b each = 408B
o Better stored as bitmap? 51 bits!

= Taint analysis has good ranges
= Byte-accurate race detection does not..
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‘ Watchpoint System Design 11

= Make some RC entries point to bitmaps

i p
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Watchpoint System Design 11

Make some RC entries point to bitmaps

Start Addr End Addr R W V B Pointer to
WP Bitmap
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Watchpoint System Design 11

Make some RC entries

point to bitmaps

Start Addr End Addr

Memory
Ranges Bitmaps
ujiy=
8L

R W V B Pointer to

WP Bitmap

Core
Range Cache Bitmap Cache

=
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Watchpoint System Design 11

Make some RC entries

point to bitmaps

Start Addr End Addr

Memory
Ranges Bitmaps
ujiy=
8L

R W V B Pointer to

WP Bitmap

Core
Range Cache Bitmap Cache

=

Accessed Iin Parallel
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‘ Watchpoint-Based Taint Analysis

= 128 entry Range Cache

1429x

19x

28X

23X

30x 206X 423x

10x

B Umbra
mVM

—
=
O

mRC

0O ™~ © IO < MO N 1 O

(X) umopmo|S
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Slowdown (x)

‘ Watchpoint-Based Taint Analysis

= 128 entry Range Cache

1429x
o 10x 30x 206X 423x 23X  28x 19x
[ m Umbra
6 _
5 - mVM
4 _
3 BMT
2 _
B RC
1 _
O _
% ‘ : ~ 20%
NO ©7 AR P P o &
SN ,ﬁ;b‘Q DI Slowdown
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Width Test
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