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Â NIST: SW errors cost U.S. ~$60 billion/year as of 2002 

Â FBI CCS: Security Issues $67 billion/year as of 2005 

Ç >ӎ from viruses, network intrusion, etc. 
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Goals of this Work 

Â High quality dynamic software analysis 

Ç Find difficult bugs that other analyses miss 

 

 

Â Distribute Tests to Large Populations 

Ç Low overhead or users get angry 

 

 

Â Accomplished by sampling the analyses 

Ç Each user only tests part of the program 
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Dynamic Dataflow Analysis 
 

Â Associate meta-data with program values 

 

Â Propagate/Clear meta-data while executing 

 

Â Check meta-data for safety & correctness 

 

Â Forms dataflows of meta/shadow information 
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Example Dynamic Dataflow Analysis 
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validate(x) x = read_input() 

a += y z = y * 75 

y = x * 1024 

x = read_input() 

Input 

Check a 

Check z 
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Distributed Dynamic Dataflow Analysis 
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Â Split analysis across large populations 

Ç Observe more runtime states 
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Distributed Dynamic Dataflow Analysis 
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Â Split analysis across large populations 

Ç Observe more runtime states 

Ç Report problems developer never thought to test 



 

Â Taint Analysis 
(e.g.TaintCheck) 

 

 

Â Dynamic Bounds 

Checking 

 

Â FP Accuracy 

Verification 

 

Â Symbolic Execution 
 

 

Â Data Race Detection 
(e.g. Helgrind) 

 

 

Â Memory Checking 
(e.g. Dr. Memory) 

 

 

Problem: DDAs are Slow 
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Our Solution: Sampling 
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Â Lower overheads by skipping some analyses 
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Sampling Allows Distribution 
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