
Highly Scalable Distributed

Dataflow Analysis

Joseph L. Greathouse

Advanced Computer Architecture Laboratory

University of Michigan

Chelsea LeBlanc Todd Austin Valeria Bertacco

CGO, Chamonix, France

April 6, 2011

Â NIST: SW errors cost U.S. ~$60 billion/year as of 2002

Software Errors Abound

2

Â NIST: SW errors cost U.S. ~$60 billion/year as of 2002

Software Errors Abound

3

Â NIST: SW errors cost U.S. ~$60 billion/year as of 2002

Software Errors Abound

4

Â NIST: SW errors cost U.S. ~$60 billion/year as of 2002

Â FBI CCS: Security Issues $67 billion/year as of 2005

Ç >ӎ from viruses, network intrusion, etc.

Software Errors Abound

5

Goals of this Work

Â High quality dynamic software analysis

Ç Find difficult bugs that other analyses miss

Â Distribute Tests to Large Populations

Ç Low overhead or users get angry

Â Accomplished by sampling the analyses

Ç Each user only tests part of the program

6

Dynamic Dataflow Analysis

Â Associate meta-data with program values

Â Propagate/Clear meta-data while executing

Â Check meta-data for safety & correctness

Â Forms dataflows of meta/shadow information

7

Example Dynamic Dataflow Analysis

8

Input

Data

Meta-data

Example Dynamic Dataflow Analysis

x = read_input()

Input

Data

Meta-data

Example Dynamic Dataflow Analysis

10

x = read_input()
x = read_input()

Associate

Input

Data

Meta-data

y = x * 1024

Example Dynamic Dataflow Analysis

11

x = read_input()

y = x * 1024

x = read_input()

Propagate

Input

Data

Meta-data

a += y z = y * 75

y = x * 1024

Example Dynamic Dataflow Analysis

12

x = read_input()

a += y z = y * 75

y = x * 1024

x = read_input()

Input

Data

Meta-data

a += y z = y * 75

y = x * 1024

Example Dynamic Dataflow Analysis

13

validate(x) x = read_input() Clear

a += y z = y * 75

y = x * 1024

x = read_input()

Input

Data

Meta-data

a += y z = y * 75

y = x * 1024 w = x + 42

Example Dynamic Dataflow Analysis

14

validate(x) x = read_input()

a += y z = y * 75

y = x * 1024

x = read_input()

Input

Data

Meta-data

a += y z = y * 75

y = x * 1024 w = x + 42 Check w

Example Dynamic Dataflow Analysis

15

validate(x) x = read_input()

a += y z = y * 75

y = x * 1024

x = read_input()

Input

Data

Meta-data

a += y z = y * 75

y = x * 1024 w = x + 42 Check w

Example Dynamic Dataflow Analysis

16

validate(x) x = read_input()

a += y z = y * 75

y = x * 1024

x = read_input()

Input

Check a

Check z

Data

Meta-data

Distributed Dynamic Dataflow Analysis

17

Â Split analysis across large populations

Ç Observe more runtime states

Ç Report problems developer never thought to test

Distributed Dynamic Dataflow Analysis

18

Â Split analysis across large populations

Ç Observe more runtime states

Ç Report problems developer never thought to test

Instrumented

Program

Distributed Dynamic Dataflow Analysis

19

Â Split analysis across large populations

Ç Observe more runtime states

Ç Report problems developer never thought to test

Distributed Dynamic Dataflow Analysis

20

Â Split analysis across large populations

Ç Observe more runtime states

Ç Report problems developer never thought to test

Potential

problems

Distributed Dynamic Dataflow Analysis

21

Â Split analysis across large populations

Ç Observe more runtime states

Ç Report problems developer never thought to test

Distributed Dynamic Dataflow Analysis

22

Â Split analysis across large populations

Ç Observe more runtime states

Ç Report problems developer never thought to test

Distributed Dynamic Dataflow Analysis

23

Â Split analysis across large populations

Ç Observe more runtime states

Ç Report problems developer never thought to test

Â Taint Analysis
(e.g.TaintCheck)

Â Dynamic Bounds

Checking

Â FP Accuracy

Verification

Â Symbolic Execution

Â Data Race Detection
(e.g. Helgrind)

Â Memory Checking
(e.g. Dr. Memory)

Problem: DDAs are Slow

24

10-200x
2-200x

10-80x

5-50x
100-

500x

2-300x

Our Solution: Sampling

25

Â Lower overheads by skipping some analyses

0

25

50

75

100

Id
e

a
l

D
e

te
c

ti
o

n
 A

c
c

u
ra

c
y
 (

%
)

Overhead
Complete

Analysis

No

Analysis

Our Solution: Sampling

26

Â Lower overheads by skipping some analyses

0

25

50

75

100

Id
e

a
l

D
e

te
c

ti
o

n
 A

c
c

u
ra

c
y
 (

%
)

Overhead

Sampling Allows Distribution

27

0

25

50

75

100

Id
e

a
l

D
e

te
c

ti
o

n
 A

c
c

u
ra

c
y
 (

%
)

Overhead

Developer

Sampling Allows Distribution

28

0

25

50

75

100

Id
e

a
l

D
e

te
c

ti
o

n
 A

c
c

u
ra

c
y
 (

%
)

Overhead

Developer

Beta Testers

