
ACCELERATING MATRIX 
PROCESSING WITH GPUs

Nicholas Malaya, Shuai Che, Joseph Greathouse, 
Rene van Oostrum, and Michael Schulte

AMD Research



| Accelerating Matrix Processing with GPUs| ARITH24 | JULY, 24 2017   2

ACCELERATING MATRIX PROCESSING WITH GPUS

Matrix operations are ubiquitous 
‒ Critical in HPC, machine learning, 3D rendering, gaming, signal 

processing, and more

 Serial performance no longer doubling every ~2 years
‒ Parallel solutions are needed 

‒ Emerging GPUs provide tremendous compute capabilities

 Important matrix processing tasks include
‒ SpMV: Sparse Matrix-Vector Multiply

‒ SpTS: Sparse Triangle Solve

‒ Graph Processing: Spare-Matrix Operations

‒ GEMM: General Matrix-Matrix Multiply

Representative of a range of challenges
‒ Solutions also apply to manycore CPUs 

MOTIVATION



| Accelerating Matrix Processing with GPUs| ARITH24 | JULY, 24 2017   3

ACCELERATING MATRIX PROCESSING WITH GPUS

 SpMV: Memory-bound problem with divergence

 SpTS: Heavily-researched sparse BLAS routine

 Graph Processing: Difficult to find general solutions

 GEMM: Compute-bound problem with new challenges

 Precision and accuracy requirements may vary greatly

 Optimizing data movement and memory accesses can be very 
important 

REPRESENTATIVE PROBLEMS



| Accelerating Matrix Processing with GPUs| ARITH24 | JULY, 24 2017   4

1

2

3

4

5

SPARSE MATRIX-VECTOR MULTIPLICATION (SPMV)

1.0 - 2.0 - 3.0

- 4.0 - 5.0 -

- - 6.0 - -

7.0 - - 8.0 -

- 9.0 - - -

× =

22

28

18

39

18

1*1 + 2*3 + 3*5

 SpMV applications include iterative solvers, machine learning, and 
graph analytics

 SpMV is memory-bound with performance dominated by how the 
sparse matrix is stored in memory

 Compressed sparse row (CSR) is the most common storage format

‒ Compresses most matrices well and runs efficiently on CPUs



| Accelerating Matrix Processing with GPUs| ARITH24 | JULY, 24 2017   5

COMPRESSED SPARSE ROW (CSR)

1.0 - 2.0 - 3.0

- 4.0 - 5.0 -

- - 6.0 - -

7.0 - - 8.0 -

- 9.0 - - -

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

0 2 4 1 3 2 0 3 1

0 3 5 6 8 9row delimiters:

columns:

values:



| Accelerating Matrix Processing with GPUs| ARITH24 | JULY, 24 2017   6

CSR-ADAPTIVE

 Efficient technique for SpMV with CSR format on GPUs
‒ Measures the number of non-zero values in each row, when matrix 

first created

‒ Groups together rows with roughly the same number of non-zero 
values

‒ Determines the number of rows each SIMD unit operates on based on 
the number of non-zero values in each row

‒ Loads contiguous rows into on-chip scratch-pad storage without 
causing memory divergence 

 Solves the problems of memory divergence and lack of parallelism 
‒ Achieves up to 95% efficiency for many input matrices

‒ Average of 28% faster than previous fastest technique

 Available as part of AMD’s clSPARSE library



| Accelerating Matrix Processing with GPUs| ARITH24 | JULY, 24 2017   7

CSR-ADAPTIVE

Block 1 Block 2 Block 4Block 3 Block 5

CSR-Stream CSR-Vector CSR-VectorL

CSR-Adaptive

Short rows Medium-sized 

rows

Long rows

A complete SpMV solution

“Efficient Sparse Matrix-Vector Multiplication on GPUs using the CSR Storage Format“, 
J. Greathouse and M. Daga. SC 2014.



| Accelerating Matrix Processing with GPUs| ARITH24 | JULY, 24 2017   8

SPMV FUTURE RESEARCH

 Sparse matrix operations are becoming increasingly important 
in machine learning
‒ Small weights and inputs are set to zero to reduce the number of 

computations 

‒ Some problems can leverage much lower precision, but methods 
are needed to determine how much precision is acceptable 

 Some input matrices have much worse performance because 
their vector inputs do not cache well
‒ Very large rows require a large number of vector accesses, which 

can displace useful data in the caches and cause memory conflicts

‒ Cache bypassing of large rows may improve performance

 New systems have closely coupled CPUs and GPUs 
‒ Interesting to investigate which calculations should occur on the 

CPU and which should occur on the GPU



| Accelerating Matrix Processing with GPUs| ARITH24 | JULY, 24 2017   9

SPTS: SPARSE TRIANGLE SOLVE

 SpTS: Solve 𝐴𝑥 = 𝑏, where A is lower triangular

‒Used in direct solves, iterative methods, least squares, etc.  

Consider a dense 3x3 lower triangular matrix:

 Solution for each row is:
𝑥1 = 𝑏1/𝑎11

𝑥2 = (𝑏2 − 𝑎21𝑥1)/𝑎22
𝑥3 = (𝑏3 − 𝑎31𝑥1 − 𝑎32𝑥2)/𝑎33

 Every row must be solved in series
‒Contention and dependencies 

START WITH THE DENSE CASE



| Accelerating Matrix Processing with GPUs| ARITH24 | JULY, 24 2017   10

SPTS: SPARSE TRIANGLE SOLVE

 For, 𝑥2 = (𝑏2 − 𝑎21𝑥1)/𝑎22
‒ If 𝑎21= 0, first two rows can be solved in parallel

‒However, data dependencies not known a-priori

 Essential challenges of SpTS:
‒Determine data dependencies between rows

‒Lack of parallelism for some problems due to dependencies

 Existing solutions: 
‒Level sets 

‒Requires analysis to determine data dependencies between rows

‒Enables load balancing and fast traversal of the solution 

‒Graph Coloring
‒Requires simpler analysis phase and row re-ordering 

‒Row re-ordering can perturb the problem solution

IMPACT OF SPARSITY



| Accelerating Matrix Processing with GPUs| ARITH24 | JULY, 24 2017   11

SPTS: SPARSE TRIANGLE SOLVE

 One solution [Liu et al.]

‒ Transpose from CSR format to Compressed Sparse Column (CSC)

‒ No longer requires pre-processing for data-dependencies 

‒ Transpose is expensive, but faster than full analysis

‒ Requires additional memory

 Efficient implementations for SpTS on GPUs and manycore CPUs 
remains an important open research area
‒ May be able to apply solutions that are similar to those used for SpMV

‒ Determining accuracy and precision needed based on problem to be 
solved 

AVOIDING THE SPARSITY ANALYSIS AND FUTURE RESEARCH 

“A Synchronization-Free Algorithm for Parallel Sparse Triangular Solves”, W. Liu, A. Li, J. 
Hogg, I. S. Duff, and B. Vinter, Euro-Par, 2016. 



| Accelerating Matrix Processing with GPUs| ARITH24 | JULY, 24 2017   12

GRAPH PROCESSING WITH BELRED 

 Graph algorithms are widely used in diverse application domains

‒ Business analytics, social network, life sciences, healthcare, 
infrastructure planning, engineering simulations, and more

 BelRed uses sparse-matrix routines to perform graph applications 
on GPUs
‒ Includes a set of key sparse-matrix and vector routines

‒ Similar to GraphBLAS, but optimized for GPUs

‒ Initial implementation with OpenCL and SNACK

‒ Clean abstraction and various underlying optimizations

OVERVIEW AND AN EXAMPLE

BelRed: Constructing GPGPU Graph Applications with Software Building Blocks,” S. Che, B. 
M. Beckmann, and S. K. Reinhardt,“ HPEC, 2014



| Accelerating Matrix Processing with GPUs| ARITH24 | JULY, 24 2017   13

BELRED

 Implemented linear-algebra routines

 BelRed implements important graph algorithms using sparse linear algebra 
operations 

‒ PageRank (SpMV)

‒ Graph coloring (SegReduc)

‒ Maximal independent set (vElementWise, SpMV)

‒ K-truss (SpMV, SpGeMM, SpElemWise)

‒ …

LIBRARY ROUTINES AND GRAPH ALGORITHMS

“Programming GPGPU graph applications with linear algebra building blocks,” S. Che, B. M. 
Beckmann, and S. K. Reinhardt, IJPP 2016.



| Accelerating Matrix Processing with GPUs| ARITH24 | JULY, 24 2017   14

BELRED

 Optimizations for the Radeon Open Compute Platform (ROCm)

‒ Optimize for lower-precision arithmetic when appropriate

‒ Leverage very efficient on-chip memories to improve performance

 Additional optimizations can build on previous work
‒ Greathouse and Daga (SC’14) for SpMV, Liu and Vinter (IPDPS’14) for 

SpGEMM

‒ Classify matrix regions into different bins (e.g., rows with different sizes), 
and launch different optimized GPU kernels to process different bins

 Multi-GPU implementations with efficient static and dynamic work 
partitioning across GPUs

 Some graph applications have interesting dependencies across 
different sparse-matrix routines
‒ Provides opportunities for more parallelism and asynchronous execution

FUTURE RESEARCH 



| Accelerating Matrix Processing with GPUs| ARITH24 | JULY, 24 2017   15

ACCELERATING MATRIX-MATRIX MULTIPLICATION (GEMM) 

 Product of two dense matrices: C = 𝐴𝐵
‒ Common operation in scientific computing and machine learning

‒ Computationally expensive and compute-bound

‒ Precision and accuracy requirements may vary greatly 

 Consider 2x2 matrix multiply,
𝑐11 𝑐12
𝑐21 𝑐22

=
𝑎11 𝑎12
𝑎21 𝑎22

𝑏11 𝑏12
𝑏21 𝑏22

 Written out, 
𝑐11 𝑐12
𝑐21 𝑐22

=
𝑎11 ∗ 𝑏11 + 𝑎12 ∗ 𝑏21 𝑎11 ∗ 𝑏12 + 𝑎12 ∗ 𝑏22
𝑎21 ∗ 𝑏11 + 𝑎21 ∗ 𝑏21 𝑎21 ∗ 𝑏12 + 𝑎22 ∗ 𝑏22

 This requires a total of 8 multiplies and 4 additions

 Matrix-matrix multiply scales asymptotically as 𝑂(𝑛3)

OVERVIEW AND AN EXAMPLE



| Accelerating Matrix Processing with GPUs| ARITH24 | JULY, 24 2017   16

GEMM MACHINE LEARNING

With HPC, matrices are often square or close to square

A (MxK) B (KxN) C (MxN)X =

With machine learning, matrix dimensions can vary greatly 
based on problem being solved and layer in the network

A 
(MxK)

B (KxN)X
C 

(MxN)
=

Optimized GEMM routines available in AMD’s MIOpen library
for a wide range of matrix sizes  



| Accelerating Matrix Processing with GPUs| ARITH24 | JULY, 24 2017   17

TECHNIQUES FOR FAST MATRIX-MATRIX MULTIPLICATION

 Strassen-Winograd Matrix Multiplication

‒ Recursive approach that reduces the number of multiplies while 
increasing the number of addative operations

‒ Reduces complexity from 𝑂 𝑛3 to 𝑂(𝑛2.807)

‒ Can increase numerical error and need for communication

 Several other techniques exist for speeding up matrix-matrix 
multiplication, but they may not work as well in practice

 Important future research includes: 
‒ Algorithms for non-square matrices of various sizes

‒ Optimizing low-precision GEMM

‒ Optimizing SpGEMM performance on GPUs and manycore CPUs

“Accelerating Strassen-Winograd’s Matrix Multiplication Algorithm on GPUs,” W. Lai, H. 
Arafat, V. Elango, and P. Sadayappan, HiPC, 2013. 



| Accelerating Matrix Processing with GPUs| ARITH24 | JULY, 24 2017   18

CONCLUSIONS

 Better algorithms 

‒ E.g., designed to expose more parallelism

 Careful mapping of algorithms to hardware
‒ New instructions and specialized hardware for fast matrix 

computations 

 Fitting problem into scratchpad memory
‒ Often requires direct programmer management

 Match precision to application and problem requirements
‒ Scientific computing: High precision

‒ Machine learning training: Low precision

‒ Machine learning inference: Very low precision 

 Libraries that capture and provide users the above

SOLUTIONS TO ACCELERATING MATRIX PROCESSING



| Accelerating Matrix Processing with GPUs| ARITH24 | JULY, 24 2017   19

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and 
typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to 
product and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences 
between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or 
otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to 
time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR 
ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO 
EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM 
THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2015 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD FirePro and combinations thereof are 
trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes 
only and may be trademarks of their respective owners.


