
ACCELERATING MATRIX 
PROCESSING WITH GPUs

Nicholas Malaya, Shuai Che, Joseph Greathouse, 
Rene van Oostrum, and Michael Schulte

AMD Research



| Accelerating Matrix Processing with GPUs| ARITH24 | JULY, 24 2017   2

ACCELERATING MATRIX PROCESSING WITH GPUS

Matrix operations are ubiquitous 
‒ Critical in HPC, machine learning, 3D rendering, gaming, signal 

processing, and more

 Serial performance no longer doubling every ~2 years
‒ Parallel solutions are needed 

‒ Emerging GPUs provide tremendous compute capabilities

 Important matrix processing tasks include
‒ SpMV: Sparse Matrix-Vector Multiply

‒ SpTS: Sparse Triangle Solve

‒ Graph Processing: Spare-Matrix Operations

‒ GEMM: General Matrix-Matrix Multiply

Representative of a range of challenges
‒ Solutions also apply to manycore CPUs 

MOTIVATION
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ACCELERATING MATRIX PROCESSING WITH GPUS

 SpMV: Memory-bound problem with divergence

 SpTS: Heavily-researched sparse BLAS routine

 Graph Processing: Difficult to find general solutions

 GEMM: Compute-bound problem with new challenges

 Precision and accuracy requirements may vary greatly

 Optimizing data movement and memory accesses can be very 
important 

REPRESENTATIVE PROBLEMS
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 SpMV applications include iterative solvers, machine learning, and 
graph analytics

 SpMV is memory-bound with performance dominated by how the 
sparse matrix is stored in memory

 Compressed sparse row (CSR) is the most common storage format

‒ Compresses most matrices well and runs efficiently on CPUs
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COMPRESSED SPARSE ROW (CSR)
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CSR-ADAPTIVE

 Efficient technique for SpMV with CSR format on GPUs
‒ Measures the number of non-zero values in each row, when matrix 

first created

‒ Groups together rows with roughly the same number of non-zero 
values

‒ Determines the number of rows each SIMD unit operates on based on 
the number of non-zero values in each row

‒ Loads contiguous rows into on-chip scratch-pad storage without 
causing memory divergence 

 Solves the problems of memory divergence and lack of parallelism 
‒ Achieves up to 95% efficiency for many input matrices

‒ Average of 28% faster than previous fastest technique

 Available as part of AMD’s clSPARSE library
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CSR-ADAPTIVE

Block 1 Block 2 Block 4Block 3 Block 5

CSR-Stream CSR-Vector CSR-VectorL

CSR-Adaptive

Short rows Medium-sized 

rows

Long rows

A complete SpMV solution

“Efficient Sparse Matrix-Vector Multiplication on GPUs using the CSR Storage Format“, 
J. Greathouse and M. Daga. SC 2014.
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SPMV FUTURE RESEARCH

 Sparse matrix operations are becoming increasingly important 
in machine learning
‒ Small weights and inputs are set to zero to reduce the number of 

computations 

‒ Some problems can leverage much lower precision, but methods 
are needed to determine how much precision is acceptable 

 Some input matrices have much worse performance because 
their vector inputs do not cache well
‒ Very large rows require a large number of vector accesses, which 

can displace useful data in the caches and cause memory conflicts

‒ Cache bypassing of large rows may improve performance

 New systems have closely coupled CPUs and GPUs 
‒ Interesting to investigate which calculations should occur on the 

CPU and which should occur on the GPU
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SPTS: SPARSE TRIANGLE SOLVE

 SpTS: Solve 𝐴𝑥 = 𝑏, where A is lower triangular

‒Used in direct solves, iterative methods, least squares, etc.  

Consider a dense 3x3 lower triangular matrix:

 Solution for each row is:
𝑥1 = 𝑏1/𝑎11

𝑥2 = (𝑏2 − 𝑎21𝑥1)/𝑎22
𝑥3 = (𝑏3 − 𝑎31𝑥1 − 𝑎32𝑥2)/𝑎33

 Every row must be solved in series
‒Contention and dependencies 

START WITH THE DENSE CASE
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SPTS: SPARSE TRIANGLE SOLVE

 For, 𝑥2 = (𝑏2 − 𝑎21𝑥1)/𝑎22
‒ If 𝑎21= 0, first two rows can be solved in parallel

‒However, data dependencies not known a-priori

 Essential challenges of SpTS:
‒Determine data dependencies between rows

‒Lack of parallelism for some problems due to dependencies

 Existing solutions: 
‒Level sets 

‒Requires analysis to determine data dependencies between rows

‒Enables load balancing and fast traversal of the solution 

‒Graph Coloring
‒Requires simpler analysis phase and row re-ordering 

‒Row re-ordering can perturb the problem solution

IMPACT OF SPARSITY
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SPTS: SPARSE TRIANGLE SOLVE

 One solution [Liu et al.]

‒ Transpose from CSR format to Compressed Sparse Column (CSC)

‒ No longer requires pre-processing for data-dependencies 

‒ Transpose is expensive, but faster than full analysis

‒ Requires additional memory

 Efficient implementations for SpTS on GPUs and manycore CPUs 
remains an important open research area
‒ May be able to apply solutions that are similar to those used for SpMV

‒ Determining accuracy and precision needed based on problem to be 
solved 

AVOIDING THE SPARSITY ANALYSIS AND FUTURE RESEARCH 

“A Synchronization-Free Algorithm for Parallel Sparse Triangular Solves”, W. Liu, A. Li, J. 
Hogg, I. S. Duff, and B. Vinter, Euro-Par, 2016. 
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GRAPH PROCESSING WITH BELRED 

 Graph algorithms are widely used in diverse application domains

‒ Business analytics, social network, life sciences, healthcare, 
infrastructure planning, engineering simulations, and more

 BelRed uses sparse-matrix routines to perform graph applications 
on GPUs
‒ Includes a set of key sparse-matrix and vector routines

‒ Similar to GraphBLAS, but optimized for GPUs

‒ Initial implementation with OpenCL and SNACK

‒ Clean abstraction and various underlying optimizations

OVERVIEW AND AN EXAMPLE

BelRed: Constructing GPGPU Graph Applications with Software Building Blocks,” S. Che, B. 
M. Beckmann, and S. K. Reinhardt,“ HPEC, 2014
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BELRED

 Implemented linear-algebra routines

 BelRed implements important graph algorithms using sparse linear algebra 
operations 

‒ PageRank (SpMV)

‒ Graph coloring (SegReduc)

‒ Maximal independent set (vElementWise, SpMV)

‒ K-truss (SpMV, SpGeMM, SpElemWise)

‒ …

LIBRARY ROUTINES AND GRAPH ALGORITHMS

“Programming GPGPU graph applications with linear algebra building blocks,” S. Che, B. M. 
Beckmann, and S. K. Reinhardt, IJPP 2016.
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BELRED

 Optimizations for the Radeon Open Compute Platform (ROCm)

‒ Optimize for lower-precision arithmetic when appropriate

‒ Leverage very efficient on-chip memories to improve performance

 Additional optimizations can build on previous work
‒ Greathouse and Daga (SC’14) for SpMV, Liu and Vinter (IPDPS’14) for 

SpGEMM

‒ Classify matrix regions into different bins (e.g., rows with different sizes), 
and launch different optimized GPU kernels to process different bins

 Multi-GPU implementations with efficient static and dynamic work 
partitioning across GPUs

 Some graph applications have interesting dependencies across 
different sparse-matrix routines
‒ Provides opportunities for more parallelism and asynchronous execution

FUTURE RESEARCH 
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ACCELERATING MATRIX-MATRIX MULTIPLICATION (GEMM) 

 Product of two dense matrices: C = 𝐴𝐵
‒ Common operation in scientific computing and machine learning

‒ Computationally expensive and compute-bound

‒ Precision and accuracy requirements may vary greatly 

 Consider 2x2 matrix multiply,
𝑐11 𝑐12
𝑐21 𝑐22

=
𝑎11 𝑎12
𝑎21 𝑎22

𝑏11 𝑏12
𝑏21 𝑏22

 Written out, 
𝑐11 𝑐12
𝑐21 𝑐22

=
𝑎11 ∗ 𝑏11 + 𝑎12 ∗ 𝑏21 𝑎11 ∗ 𝑏12 + 𝑎12 ∗ 𝑏22
𝑎21 ∗ 𝑏11 + 𝑎21 ∗ 𝑏21 𝑎21 ∗ 𝑏12 + 𝑎22 ∗ 𝑏22

 This requires a total of 8 multiplies and 4 additions

 Matrix-matrix multiply scales asymptotically as 𝑂(𝑛3)

OVERVIEW AND AN EXAMPLE
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GEMM MACHINE LEARNING

With HPC, matrices are often square or close to square

A (MxK) B (KxN) C (MxN)X =

With machine learning, matrix dimensions can vary greatly 
based on problem being solved and layer in the network

A 
(MxK)

B (KxN)X
C 

(MxN)
=

Optimized GEMM routines available in AMD’s MIOpen library
for a wide range of matrix sizes  
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TECHNIQUES FOR FAST MATRIX-MATRIX MULTIPLICATION

 Strassen-Winograd Matrix Multiplication

‒ Recursive approach that reduces the number of multiplies while 
increasing the number of addative operations

‒ Reduces complexity from 𝑂 𝑛3 to 𝑂(𝑛2.807)

‒ Can increase numerical error and need for communication

 Several other techniques exist for speeding up matrix-matrix 
multiplication, but they may not work as well in practice

 Important future research includes: 
‒ Algorithms for non-square matrices of various sizes

‒ Optimizing low-precision GEMM

‒ Optimizing SpGEMM performance on GPUs and manycore CPUs

“Accelerating Strassen-Winograd’s Matrix Multiplication Algorithm on GPUs,” W. Lai, H. 
Arafat, V. Elango, and P. Sadayappan, HiPC, 2013. 
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CONCLUSIONS

 Better algorithms 

‒ E.g., designed to expose more parallelism

 Careful mapping of algorithms to hardware
‒ New instructions and specialized hardware for fast matrix 

computations 

 Fitting problem into scratchpad memory
‒ Often requires direct programmer management

 Match precision to application and problem requirements
‒ Scientific computing: High precision

‒ Machine learning training: Low precision

‒ Machine learning inference: Very low precision 

 Libraries that capture and provide users the above

SOLUTIONS TO ACCELERATING MATRIX PROCESSING
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