A Runtime Metric of Design Confidence
For Use in Dynamic Verification & Design Refinement

Joseph Greathouse and Kenneth Zick
December 12, 2006

EECS 578 Final Project
List of Topics We Will Use to Wow You

- **Motivation**
 - We restate some ideas from class and say what is broken!

- **Background work**
 - What you need to know about what we need you to know

- **Problem Statement**
 - We clearly define the problem so that we can be the ones to solve it

- **Our Contributions**
 - Includes our fantastic plan for fixing all the flaws we bring up

- **Experimental Results**
 - Proof that our work is a great solution!

- **Conclusions**
 - We will rush through this to finish on time.
Motivations

- Runtime verification (checker processors, etc.)
 - Benefits of this are pretty well-covered in this class.

- Even so, questions about runtime verification:
 - How confident are you in a deployed design?
 - Diagnose a problem in the field: Is your fix good?
 - What if the fix breaks something else?
 - How can you compare replacement designs?
 - What parts of the design are to blame when you detect a failure?
 - How badly broken are they?
Background work

- Formally Verified Checkers/DIVA
 - Find bugs in real-time, correct them with slowdown

- Statistical learning approaches
 - Learn and predict failure rates using runtime statistics

- Dynamically-reconfigurable computing
 - Replace “too-buggy” designs on reconfigurable circuits (e.g. FPGAs)

- Design diversity
 - Multiple versions of a design lessen chance of overlapping bugs
The Official Problem Statement

Find a scheme to quantify the confidence in a design at runtime

- Must be able to identify problematic regions in the design
- Should allow fair comparison of similar systems
- Needs to be constantly updated during system operation
Now For Our Solutions

A Runtime Metric of Design Confidence

Module-Level Probabilistic Diagnosis
A Runtime Metric of Design Confidence

Design confidence? What do you mean by that?

- An estimated probability that a design will operate correctly when run in a specific system environment (e.g. embedded system)
- Concerned with the **probability** of future failure, not number of bugs

We represent confidence as a scalar value with range:
- 0 (terrible design) to 1 (we think it’s good)

Key aspects of our metric:

- Failure statistics
- Probabilistic diagnosis
Failure statistics

- Failures detected by runtime checkers
 - Mark each *watched module* when you see an error
- Use failure data to estimate confidence in each module
 - Assumption: Future failures correlated with past failures
 - Statistical technique: parameter learning.
 - Predictions based on maximum likelihood hypothesis
- Must find some way to assign confidence to parts of the design we do not watch.
Probabilistic diagnosis

Create a directed weighted graph of the system:

- ‘Causal network’
- Nodes represent design modules
- Links represent signals flowing from one module to another
- How is the weighting determined?
Some methods for determining weights:

1. **Expert knowledge (ad hoc method)**
 - “If this checker fails, there is probably a bug in IF, or possibly in ID”

2. **Systematic analysis of system structure**
 - *Compute the contributions of each module to the logic cone that feeds a checker.*
 - Treat modules as black-boxes and base the weights on fanouts and proportion of interconnections.
 - In our proposal, the weight from module i to module j is:

$$w_{ij} = \begin{cases}
1 & \text{if module } j \text{ has a checker and } i=j \\
'X' \text{ (don’t care)} & \text{if module } j \text{ has no checker} \\
\sum \frac{1}{(\text{fanout}_s \times \text{num signals to } j)} & \text{for all signals } s \text{ from } i \rightarrow j
\end{cases}$$
Probabilistic diagnosis

- Weights can be computed at design time. Saved in an *implication matrix*.

- At runtime failure, modules are implicated (blamed) according to the precomputed weights.

- Example: module C gets charged with 0.8 of a failure for every failure caught at module A.

<table>
<thead>
<tr>
<th>Dest</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Src</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0.9</td>
<td>X</td>
</tr>
<tr>
<td>B</td>
<td>0.2</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td>0.8</td>
<td>0.1</td>
<td>X</td>
</tr>
</tbody>
</table>

Example: Implication matrix for system with 3 modules. Only modules A & B have checkers.
Runtime metric: an example

- Watch for errors with checker processor
- Record error numbers for watched modules
- Statically assign *weighted blame* to all modules based on these error numbers.
- Compute confidence in modules using compiled blame statistics
Runtime metric: an example

- Watch for errors with checker processor
- Record error numbers for watched modules
- Statically assign *weighted blame* to all modules based on these error numbers.
- Compute confidence in modules using compiled blame statistics
Runtime metric: an example

- Watch for errors with checker processor
- Record error numbers for watched modules
- Statically assign *weighted blame* to all modules based on these error numbers.
- Compute confidence in modules using compiled blame statistics
Experimental Setup

- Five-stage pipeline. One known-good (checker), one under test
- Multiple versions of each stage under test (one version active at a time)
- All stages under test have design defects
- Test suite: 50,000 vectors of directed tests
- Good stages maintain correct architectural state of bad pipe
Experiment 1: Can design confidence be used to find a good system configuration?

- Checkers on every stage (i.e. assume full visibility)
- Select among two buggy versions of each stage
 - $2^5 = 32$ possible system configurations
- Initialize all confidence values to 1.0

Simple decision procedure:
- Compare failure rates of current version vs. others of same stage. Repeat for all modules.
- Swap versions that lead to biggest increase in module confidence
Experiment 1 Results

- We ran all possible starting configurations
- Results: System pass/fail rate improves significantly over time
 - Fail rate decreases to 36 fails every 50,000 cycles.
 - Optimal configuration is found for 2/3 of starting configurations
Experiment 2: When checking is limited, can we use simple probabilistic diagnosis?

- Partial checking: only 3 of 5 modules have checkers

- Watch signals that affect architectural state.

- Set weights to 1 for unchecked source modules.

- Again we ran from all possible starting configurations
Experiment 2 Results

- Results: even with simple implication ($w=1$), probabilistic diagnosis can provide some benefit (at least on this tiny example)!
Experiment 3: Hypothesis: proportional weighting will work even better

- Now try probabilistic diagnosis with *proportional* weighting

- Try two proportional weighting schemes:

 Implication matrix for weighting #1
 (Based on total # of input bits)

<table>
<thead>
<tr>
<th>Src</th>
<th>Dest</th>
<th>IF</th>
<th>ID</th>
<th>EX</th>
<th>M</th>
<th>WB</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>.321</td>
<td>0</td>
<td>.474</td>
</tr>
<tr>
<td>ID</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>.465</td>
<td>.015</td>
<td>.044</td>
</tr>
<tr>
<td>EX</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
<td>.985</td>
<td>.007</td>
</tr>
<tr>
<td>M</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>.214</td>
<td>1</td>
<td>.474</td>
</tr>
<tr>
<td>WB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

 Implication matrix for weighting #2
 (Collapse data busses into single input signal)

<table>
<thead>
<tr>
<th>Src</th>
<th>Dest</th>
<th>IF</th>
<th>ID</th>
<th>EX</th>
<th>M</th>
<th>WB</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>.702</td>
<td>0</td>
<td>.111</td>
</tr>
<tr>
<td>ID</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>.277</td>
<td>.4</td>
<td>.667</td>
</tr>
<tr>
<td>EX</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
<td>.6</td>
<td>.111</td>
</tr>
<tr>
<td>M</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>.021</td>
<td>1</td>
<td>.111</td>
</tr>
<tr>
<td>WB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Experiment 3 Results

![Graph showing Experiment 3 Results]

- **Proportional by input signals**
- **Proportional by input bits**
- **Unit implication**
- **No implications**
- **Ideal**

The graph illustrates the average system pass rate across refinement steps for different proportions and implications. The ideal line remains constant at 1, indicating no deviation from perfection. Other lines show varying degrees of deviation from the ideal, with some lines showing increases and decreases at different stages of refinement.
Lessons learned

- Cross-pollination can yield useful ideas
 - Software reliability originally modelled on hardware reliability
 - Due to design complexity, HW may now benefit from SW reliability ideas

- Many of these concepts have a surprisingly long history.

- Assertions are not as great as we initially thought

- Industry has related projects with related ideas
 - e.g. Sun Niagara II, IBM autonomic computing

- Possible future work:
 - Scalability, new heuristics, sophisticated weighting, non-proc. systems
Thank you!