AGEIA PhysX Physics Processing Unit
EECS 573 Case Study

Joseph Lee Greathouse
March 21, 2007
Overview Slide!!

- Physics!
 - What’s that?
- Calculating Physics
 - Super-duper easy version
- Software versus Hardware physics
 - Why hardware physics is awesome
- PhysX Microarchitecture
 - Probably
- Comparison to other Devices
 - Alternate Title: PhysX is a lot like Cell & better than GPGPU
Physics in Modern Games

- **Rigid Body Physics**
 - Non-deformable objects
 - Newtonian physics effects
 - Most common type of game physics today

- **Volumetric Fluids**
 - Modeling how fluidic actions occur
 - Simulated with loads of individual particles
 - Other volumetric tasks: e.g. smoke

- **Cloth**
 - Deformable clothing, rugs, etc
 - Modeled by sheets of particles
Physics in Modern Games

- **Rigid Body Physics**
 - Non-deformable objects
 - Newtonian physics effects
 - Most common type of game physics today

- **Volumetric Fluids**
 - Modeling how fluidic actions occur
 - Simulated with loads of individual particles
 - Other volumetric tasks: e.g. smoke

- **Cloth**
 - Deformable clothing, rugs, etc
 - Modeled by sheets of particles
Physics in Modern Games

- **Rigid Body Physics**
 - Non-deformable objects
 - Newtonian physics effects
 - Most common type of game physics today

- **Volumetric Fluids**
 - Modeling how fluidic actions occur
 - Simulated with loads of individual particles
 - Other volumetric tasks: e.g. smoke

- **Cloth**
 - Deformable clothing, rugs, etc
 - Modeled by sheets of particles
How is this stuff calculated??

- Lots and lots of matrix math

- LCP: Linear Complementarity Problem
 - It turns out that these are very easy to do in parallel
 - NP-Complete

- Requires a lot of communication between parallel processes

- Huge floating-point requirement
Physics on Modern Computers

- Processor runs game engine
- Game engine calls Physics API (e.g. Havok)
- Processor runs physics algorithms
 - This can take a really, really long time
- Processor returns result to game engine
- Processor sends data to graphics system
Physics with a Physics Accelerator

- Processor runs game engine
- Processor calls Physics API (e.g. PhysX/NovodeX)
- PPU runs physics algorithms
 - Faster at each physics calculation
 - Processor free to do other stuff now
- PPU returns result to game
- Processor sends data to graphics system
PhysX Microarchitecture

(Probably)
PhysX Microarchitecture
(Probably)
PCU (probably) a MIPS64 5Kf RISC CPU
- PCU means PPU Control Unit
- Controls physics “programs”
- Mostly scalar, integer, and control data
- Assigns tasks to DME/VPE
- Controls communication to PC and driver
- No other info about PCE architecture
- One option:
 - Maybe connects to VPE directly
 - Might put data into place for the MCU
PhysX Microarchitecture

(Probably)
PhysX Microarchitecture

VPE

VPU

PCE

DME

Switch Fabric

MIU

PCI/E Controller

Controller

GDDR3 RAM

PCI/E Bus

(Probably)
DME: Data Movement Engine

- MIU Connects to Board’s 128MB GDDR3 RAM
- Two (or more) options:
 - Dumb switching fabric to connect everything together
 - May be partially programmable to optimize interconnections
- PCI & PCI-E Currently Supported
 - Patents mention using Firewire, USB, etc.
PhysX Microarchitecture
(Probably)
PhysX Microarchitecture

(Vector Processing Engines

- IEM/SPRAM
- Vector Processing Engine 0
 - VPU0
 - VPU1
 - VPU2
 - VPU3

- MCU

GDDR3 RAM

PCI/E Bus

VPE1

VPE2

VPE3

(Probably)
VPE: Vector Processing Engines

- Probably four VPE in current PhysX implementation
- VPEs communicate with each other through DME
VPE: Vector Processing Engines
VPE: Vector Processing Engines

Vector Processing Engines

IEM/SPRAM

MCU

IEM/SPRAM

VPE1

VPE2

VPE3
MCU: Memory Control Unit

- Controls data transfer from PPU RAM to VPU
 - Received program orders from PCE
 - Can communicate with other MCUs as well (through DME)

- Can store data in an Inter-Engine Memory or Scratchpad RAM, etc.
 - Can also move data to/between individual VPUs

- IEM can be used as storage space to move data between VPUs
VPE: Vector Processing Engines
VPE: Vector Processing Engines
VPU: Vector Processing Unit

- Does the actual physics calculations

- Units communicate through shared memory & registers
 - Multithreaded

- Shared memory is banked:
 - MCU can access one block while units utilize the other, etc

- Shared memory might be 4Kbyte/bank
VPU: Vector Processing Unit

Vector Processing Unit

Instruction Memory 0

Common Memory Bank 0

Data Processing Unit 0

Vector

Scalar

Data Processing Unit 1

Vector

Scalar

Instruction Memory 1

Bank 1
VPU: Vector Processing Unit

Data Processing Unit

Vector

FPU.x FPU.y FPU.z

Scalar

Arithmetic Logic Unit

Load-Store Unit

Predicate Logic Unit

Branch Unit
Data Processing Unit

- Specialized VLIW Processor
- Three FPU Calculations at once in vector processor
 - e.g. FMADD, FMSUB, FDOT, etc.
- Integer, load/store, branching done in scalar form
- MCU puts program for each data processing unit in instruction memory bank
PhysX Microarchitecture

(One last time)
Some interesting PhysX Facts

- No traditional cache
 - Physics calculations don’t display good locality
 - Memory is controlled explicitly by MCU and PPE

- TSMC manufactured: AGEIA is fabless
 - 125 million transistors
 - 182 mm²
 - 28W (for card?) / 20W (for chip?)

- Up to 96 floating point ops (multiply-add, multiply-sub, etc) per clock cycle
 - 4 VPE x 4 VPU x 2 DPU x 3 FP ops = 96 ops
Real Performance Figures

- Hard to come by
 - Not a particularly large number of games support PhysX yet

- Some games slow down
 - When PhysX is plugged in, particle count skyrockets
 - You need to graphically render all those neat particles now!

- No industry-standard Physics benchmarks
 - Makes it hard for review sites to press button and get charts
PhysX versus Cell

- PhysX looks a lot like the Cell processor!
 - Central RISC Processor
 - Vector processing elements
 - No classical caches
- It turns out that Cell is pretty good at physics too.
 - PS3 Dev kit includes PhysX SDK at no cost.
- Memory subsystem, says AGEIA, is limited, though.
 - EIB is a ring network.
 - SPE can’t talk freely.

© Nicholas Blachford 2005
PhysX versus GeForce8

- Large number of parallel stream processors
- NVIDIA hopes to use this for GPGPU – Including physics
- AGEIA engaged in PR war over this stuff.

Primary argument: Memory System
 - Extremely large LCP require moving a lot of data between processors
 - Memory arrangement in GeForce8 can’t effectively move this data

Might be good enough for the majority of users, though!
Questions? Discussion?

- Future Features?
 - AGEIA is only saying “smaller process: more transistors” right now.

- How do you measure performance?
 - Harder to quantify than framerate and resolution.

- Will it survive?
 - Will GPGPU or highly-multicore CPU kill it?
 - Will it end up integrated into some other product?

- How can you take this online?
 - My physics is different from your physics... Whose world is right?