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ABSTRACT 
We offer a series of statistical approaches that quantify confidence 
in a digital system’s design at runtime.  Using runtime checkers to 
detect errors, we present a system to collate information about 
these errors and assign a confidence number to both a design and 
modules in the design.  We then show methods for implicating 
unchecked modules for failures deeper in the system.  Using these 
methods, we give a series of examples of a small system with 
numerous errors among its modules.  We show that even without 
checking all modules, we can often find the modules in which 
errors originate and replace these modules, resulting in the 
betterment of the system as a whole. 
Keywords 
Runtime verification, reliability, design confidence, fault tolerant 
computing. 

1. INTRODUCTION 
Verification engineers fight what seems like a losing battle with 
the continuous rise of the complexity in digital systems.  
Academia has responded by attempting to make new types of 
verification schemes viable.  These include a number of formal 
methods for verifying the correctness of a circuit mathematically 
[3].  These formal methods are often too computationally 
intensive to use against whole commercial designs, but they may 
be put to other uses.  For instance, there are formally verified 
runtime checking mechanisms that can detect failures in a system 
while the system runs its normal programs [1]. 

The idea behind runtime verification schemes is watching the 
system during its operation and finding/correcting errors as they 
happen.  These methods, if they can correct errors, often do so 
silently, fixing the system during its operation so that the user 
never sees the problem.  While this seems like a panacea to the 
problem of design complexity, the cost of fixing runtime errors is 
reduced system performance during error-correction.  Due to this 
performance loss, system designers may require a design that has 
very few failures in an effort to ensure high performance. 

Similarly, real-time systems will have difficulties with a design 
that suddenly changes its performance characteristics due to 
errors.  This does not, however, mean that a runtime checker 

would not be useful for such designs.  Tools such as formal 
checkers [4] and onboard assertions [9] can be used to help debug 
a design by finding errors and reporting them during operation.  

1.1 Contribution Overview 
We present a method for quantifying the confidence in a system’s 
design based on runtime checking information.  We assign a 
confidence number to individual modules in a design based on the 
error information obtained from onboard error-detection units.  
This information can be returned to verification engineers for bug-
hunting purposes, or it can be used internally to help a system 
detect and work around its own bugs. 

We assign these confidence numbers using a metric based upon 
the number of errors detected across the circuit.  It is impossible, 
however, to watch all outputs of all modules in a complex design.  
As such, we need a method for assigning errors to modules that 
we cannot monitor directly.  We present a technique called 
module-level probabilistic diagnosis to assign partial-errors to 
unwatched modules.  Additionally we analyze three different 
methods of assigning failures. 

1.2 Background Information 
The idea of a runtime checking is central to this paper.  Much of 
the literature focuses on using runtime checkers to greatly reduce 
the number of errors in a system, thereby allowing designs with 
bugs to operate accurately in the field.  We leverage the idea of a 
module-level checker that watches the outputs of certain parts of 
the design and checks them for accuracy.  An example of this is 
the formally verified checker processor presented in [13].  We 
utilize design ideas like this as the core error-finding mechanism 
for our metric. 

We utilize statistical learning approaches in this paper to justify 
our confidence metrics.  Causal networks and probabilistic 
methods are important for assigning errors across the system at 
runtime.  Techniques such as this are found in the literature [7], 
but our method is based on both module- and system-level 
runtime checking, rather than design-time bug categorization.  
Causal reasoning has been used to perform automated diagnosis, 
by identifying the next set of diagnostic tests [8].  Our approach 
does not involve a sequence of tests or complete diagnosis, but 
rather acts as a statistical estimate. 

 
Some runtime techniques for fixing errors rely on the verification 
engineer to find an error and describe it to the checker in order to 
fix it [12].  We feel that the presented technique is compatible 
with systems such as this because our work is focused on finding 
which bugs are particularly crucial to repair and from where these 
bugs originate. 

 
 
 
 

 
 

While there is an entire field devoted to the reliability of systems, 
the models presented in this paper are not meant to estimate the 

 
 
 
 



reliability of a system over its lifetime.  Instead, they are designed 
to estimate the correctness of a system’s design.   

1.3 Organization 
We will begin this paper by discussing our runtime metric of 
design confidence.  We will describe what exactly we mean by 
runtime confidence and detail the types of statistics needed to 
obtain it.  We will follow this with methods for obtaining these 
statistics.  This is contained in section 2. 

Section 3 will explore our current methods for module-level 
probabilistic diagnosis.  We will explain a weighted-graph method 
for assigning the blame for a detected failure.  We will also 
discuss the implication matrix method of holding these weights, as 
well as two methods for determining these weights. 

Our experimental data is contained in section 4.  We show our 
confidence metric in action on a buggy design of small-to-
moderate size in simulation.  The design is tested blindly and we 
use our confidence estimations to decide which parts are most 
likely causing failures at the system level. 

In section 5 we discuss future work that could improve the ideas 
presented here, as well as ideas for work that can utilize the idea 
of dynamic design confidence. 

2. DESIGN CONFIDENCE 

2.1 Runtime Confidence 
We present the idea of runtime design confidence in this section.  
This is a scheme to quantify confidence in the correctness of a 
design using runtime information.  We define confidence in a 
design as an estimated probability that a design will run correctly 
(and continue to run correctly) when it is in a certain system 
environment.  As such, a confidence score is concerned with the 
probability of failure, not the number bugs.  While a design may 
have many bugs, if they never appear, we can be confident that 
the design will work correctly the majority of the time. 

In contrast to reliability estimates, which predict the average time 
a class of parts will take to fail, confidence estimates predict 
whether a single product will continue to operate correctly for the 
foreseeable future.  This is based on the assumption that past 
failures forecast future failures of the same type.  Confidence 
estimates cannot tell us how long it will be until a catastrophic 
failure of the part.  Rather, they are useful to answer “is this a 
good design?” 

We aim to make this confidence number useful for identifying 
problematic regions in a design, indicating erroneous parts by 
giving them lower module-level confidence scores.  The scores 
themselves should be comparable across systems of similar design 
and modules of different complexity.  Confidence scores should 
be useful for comparing the correctness of similar designs in 
similar environments.  Finally, because these confidence numbers 
are based on runtime information, they need to be constantly 
updated during system operation. 

2.2 Runtime Prediction of Failure Rates 
It can be difficult to accurately model the future failure rate of a 
complex design before it is deployed into the field.  Traditional 
methods such as ‘bug curves’ give an indication of how many 
bugs are likely to be found before deployment, but provide little 
guidance about whether subtle bugs will be exposed in the field, 
nor do they estimate how often those bugs will cause a failure. 

We propose a straightforward method of predicting failure rates 
using the runtime statistics.  First, we treat runtime failure 
statistics as an estimate of a design’s inherent failure rate for a 
given system environment.  This is standard statistical parameter 
learning, where the parameter in question is the inherent failure 
rate [10].  Second, we use the observed failure rate as a prediction 
of the future failure rate, according to the maximum likelihood 
hypothesis.  If a design has failed once every million instructions 
in the past, maximum likelihood suggests that the actual failure 
rate is one in a million.  This hypothesis is only an approximation, 
and it requires that we collect enough data.  But it has proven to 
be useful in many situations, and it acts as a valuable starting 
point that is easy to implement in hardware. 

To these ends, we give a rough formula for design confidence as 
              1x xDesignConfidence FailureRate= −  (1) 

This yields a confidence that lies between zero and one.  Zero 
implies a completely broken design where every instruction fails.  
One only implies that the design may not have any problems.  
Note that even though we have full confidence in the design we 
do not rule out the possibility of future failures.  We can only say 
that we have not seen any failures, so we believe that the part will 
continue to function properly. 

2.3 Failure Statistics 

 
Figure 1. Modules may go unwatched by the checker 

We must keep track of statistics about failures in the system in 
order to calculate the failure rate of a design.  This is done with 
the help of runtime checkers that watch for failures.  The source 
module is marked with an error when a module failure is caught 
by the onboard checker.  We can keep track of these errors, 
whether the checker fixes them or not, to give a failure rate for use 
in design confidence calculation.  In this manner we can calculate 
design confidence not just for the system as a whole, but also for 
individual modules in the design. 

Because we base our failure statistics (and thus our design 
confidence) on the number of errors seen, our confidence metric is 
a function of the environment the system is in at runtime.  This is 
one of the benefits of runtime checker: the system may reach 
many states that it would not see during normal lab tests.  
Conversely, we cannot give a firm confidence in the design 
because the design will never run through all types of programs. 

An additional challenge of calculating failure statistics comes 
from the inability to watch every output in a design.  How should 
we assign failure statistics to a circuit we cannot check directly?  
See Figure 1 for an example of this situation.  In this example, the 
ROB module is completely contained in a watched module, but it 



may still be erroneous.  We present plans for assigning blame to 
unwatched modules in the following section. 

3. MODULE-LEVEL PROBABILISTIC 
DIAGNOSIS 

3.1 Overview 
There are significant barriers to diagnosing design defects in an 
automated fashion.  In high-availability systems we can typically 
not afford to take the system offline to perform a complete 
diagnostic procedure.  The same can be said for real-time systems.  
Even for systems without these requirements, it can be difficult to 
automatically pinpoint the root cause of a design defect and 
institute a workaround. 

We propose a method of estimating the cause of design failures 
when a complete diagnosis is not feasible.  In our method, a 
partial high-level diagnosis is performed while the system remains 
online; modules are identified as faulty with certain probabilities.  
These probabilistic failures are tracked by the failure statistics, 
just as with actual failures.  Thus the statistics provide an indirect 
measure of a design’s level of defectiveness, which in turn 
determines our level of confidence.  It is important to measure 
confidence at the module level in order to feed information back 
to module designers and verification team, and just as important, 
to allow reconfiguration of systems where modules act as the field 
replaceable units. 

3.2 Weighted-Graph Representation 
To enable module-level probabilistic diagnosis we build a directed 
weighted graph of the system, similar to a causal network [8].  
The nodes of the graph represent modules, and links represent 
signals flowing from one module to another.  In our contribution, 
the links are weighted to indicate the importance of the 
interconnection.  In other words, they indicate how much 
responsibility a source module is assumed to have for failures 
detected at the destination module.  Some methods for 
determining the weights are discussed in the following section. 

 
Figure 2. Directed weighted graph model of an example 

system.  Nodes have an implied link to themselves. 

3.3 Methods for Determining Weights 
We propose a systematic calculation of weights based upon an 
analysis of the design structure.  In particular, we recommend 
computing the contributions of each module to the logic cone that 
feeds a checker.  As a heuristic, we treat each module as a black 
box and tally the number of signals connecting each pair of 
modules.  The weighting function for a link between module i 
(source) and module j (destination) is as follows.   

(2) 

1     if module j has a checker and i=j 

 

X    (don’t-care) if module j has no checker 

 

∑ 1 / (FOs × (# inputs to j)) for all inputs si→j 

wij = 

    

If a module has a checker, it is implicated with an integer weight 
of 1 whenever a fail is detected by that checker.  If a module has 
no checker, the weight of an incoming link is a don’t-care because 
fails can never be detected at that destination. 

The most interesting case is for links from a module without a 
checker to another module that has one.  In such a case, we 
compute the proportion of responsibility associated with the 
source module, by computing the proportion of signals feeding 
into the destination module.  If 30% of the inputs to module j 
come from module i, then module i will be implicated at a level of 
0.30 for every failure caught at module j.  There is one more 
modification we must make, and that is to divide by the fan-out of 
each input.  If a line fans out to 3 modules with checkers, then its 
individual contribution to the weight is divided by 3, so the 
module will not get implicated multiple times.  Finally, we 
perform a summation over all of the inputs to determine the 
weight for the link. 

3.4 Implication Matrices 
The full set of weights can be stored in an implication matrix.  
Table 1 illustrates an example matrix for a system with 3 modules 
(A,B,C).  Module C does not have a checker, so the implication 
column for C is a don’t-care.  The columns for A and B indicate 
how much the source modules are implicated for failures detected 
in A and B.  As an example, when a failure is detected at module 
A, module C is implicated at a level of 0.8. 

Table 1. Implication matrix for a system with 3 modules.  
Only modules A and B have associated checkers.   

   Src \  Dest A B C 

A 1 0.9 X 

B 0.2 1 X 

C 0.8 0.1 X 
 

In the general case of a system with more than 1 checker per 
module, the matrix would contain m rows for the modules and c 
columns for the checkers. 

As long as a system’s interconnections are static, then the 
implication matrix can be accurately determined at design time.  
The matrix values would then be encoded into the confidence 
logic for use at runtime.  



 

4. EXPERIMENTAL DATA 

4.1 Experimental Setup of a Small Design 
We tested our confidence estimate ideas against a small-to-
moderate sized Verilog design run in simulation.  The design 
itself was a five-stage pipeline split into a module for each stage 
and an encompassing module for the pipeline and its registers.  To 
simulate a runtime checker, we kept a known-good version of 
each stage in the pipeline and compared its outputs to the DUT 
version of that respective stage.  If there were differences in the 
output signals we would flag that stage and propagate the error 
along with the instruction until commit.  Figure 3 shows this 
setup. 

Our test designs were modeled on the known-good design with a 
range of errors manually inserted by the authors.  Some errors 
were modeled after bugs found in the original design of the 
pipeline, while others were more general.  Two versions of each 
of the five pipeline stages were made, leading to 32 possible 
configurations of the whole system. 

The design was run through a 50,000 instruction suite of small 
tests, and the 32 designs ranged from 33 to 177 erroneous 
instructions.  The same 50,000 instruction test was run for every 
configuration during these tests. 

To expedite the large number of test runs required of these 
experiments, we created a Java program which implemented our 
refinement heuristic.  The program utilized the failure data that 
was generated by our Verilog simulations.  The program would 
start with a given system configuration and track the failure 
statistics (and design confidence values) for each of the 10 
versions (2 versions of each module).  It would then execute our 
reconfiguration decision procedure (heuristic) and move on to the 
next step with a new system configuration.  The decision 
procedure would continue for 15 steps.  Finally, this same 
procedure was run for all possible starting configurations, and the 
results were averaged over all runs. 

4.2 Experiment 1 
4.2.1 Hypothesis 
Starting from any system configuration, our design confidence 
scheme and refinement procedure will lead to an improved system 
design in a small number of refinement steps.  The number of 
steps will be much less than the number of unique system 
configurations; it will linear in the total number of module 
versions.  

Table 2. Example refinement sequence.   By improving 
module-level confidence, the system-level pass rate also 

improves, after temporary decreases at steps 2 & 3. 

Step System 
config. 

System 
pass/fail rate 

Figure 3. Experimental Setup.  The known good designs at 
the top are compared to the DUT at bottom 

Refinement 
decision 

0 00000 0.9968 WB: v0->v1 

1 00001 0.9980 ID: v0->v1 

2 01001 0.9979 MEM: v0->v1 

3 01011 0.9978 EX: v0->v1 

4 01111 0.9986 IF: v0->v1 

5 11111 0.9991 no change 

 
4.2.2 Description 
This experiment shows that if a module’s outputs are monitored, it 
is possible to accurately find the most erroneous individual 
modules in most cases.  Beginning at any of the possible 32 
starting configurations we would switch out the single module 
that would increase the overall system confidence the most.  Table 
2 shows an example refinement sequence starting from 
configuration 0000 while Figure 4 shows the confidence in a pair 
of modules from the starting sequence 01010. 

We test the idea that even though bugs in one module may cause 
failures in subsequent modules, we can correctly identify the 
worst modules eventually and find a good system configuration. 

This experiment shows the best-case situation for our method of 
switching modules.  It will be useful in future tests to compare 
their correctness over time versus this case.  

4.2.3 Results 
Figure 5 details the results of experiment 1 averaged over all 
starting states.  The average correctness of the designs rises over 
the course of the refinement, and by steady-state, 2/3rds of designs 
are in the optimal configuration.  Of those that are left, their 
correctness has still improved from their initial configurations.  
The average system performance converges after about 10 steps, 
which matches the total number of design versions.  

 

0.9980

0.9985

0.9990

0.9995

1.0000

0 1 2 3 4 5 6 7 8 9 10

Refinement steps

D
es

ig
n 

co
nf

id
en

ce

Confidence: EX version 0

Confidence: EX version 1

Switch to
version 0

Switch back 
to version 1

Initial config:
version 1

Figure 4.  Confidence in two module versions over time 



 

 

4.3 Experiment 2 
4.3.1 Hypothesis 
In a system with only partial checking, probabilistic diagnosis 
(with implication weights=1) will provide better system reliability 
than an alternative method without any back-propagation of 
errors. 

4.3.2 Description 
In this experiment we test the efficacy of probabilistic diagnosis in 
a system with only partial checking.  Specifically, checkers are 
enabled for only three of the five stages (EX, MEM, and WB).  
Two of stages (IF and ID) have no checker, so the confidence of 
the respective design versions must be inferred indirectly. 

Similar to Experiment 1, we simulated the system for all possible 
starting configurations, using the given refinement heuristic.  We 
did this with probabilistic diagnosis turned off (e.g. zero 
implication, weights of unchecked modules are 0), and again with 
probabilistic diagnosis turned on (implication with weights of 1). 

4.3.3 Results 
The results indicate that system reliability is in fact improved with 
probabilistic diagnosis.  Please refer to Figure 6.  Without 
probabilistic diagnosis, the overall system fail rate converges to 
62.78 fails per test, while with probabilistic diagnosis, the system 
fail rate reaches 47.97, a 24% improvement. 

Note that the reliability with zero implication initially outperforms 
unit implication.  We feel that this is because a locally optimum 
configuration can be found more quickly, due to the smaller 
search space.  Specifically, without implication, the IF and ID 
modules never encounter any failures, and retain full design 
confidence (1.0).  Thus the system never reconfigures those 
modules, and only needs to reconfigure the remaining three 
modules.  As a result, with no implication, the system can achieve 
a local optimum in fewer than 8 refinement steps.  With unit 
implication, the system is able to estimate the design confidence 
of the IF and ID versions, and has a larger space of system 
configurations.  Unit implication performs better than no 

implication after about 8 refinement steps, which matches our 
intuition. 

 

4.4 Experiment 3 
4.4.1 Hypothesis 
Proportional weighting will provide better system reliability than 
unit or zero weighting. 

4.4.2 Description 
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Figure 6. Experiment 2 Results.  Unit implication 

outperforms zero implication after just a few steps.  Figure 5. Experiment 1 Results.  Pass-rate of system on 
average from all 32 start-states increases over refinements 

We simulated two proportional weighting schemes and compared 
the results to unit and zero weighting (experiment 2).  As before, 
for each scheme we simulated all possible starting configurations, 
and used the given heuristic for refinement decisions. 

The first weighting scheme counts the numbers of input lines 
(individual bits) feeding a module with a checker.  The second 
scheme counts the number of input signals, where data busses are 
treated as a single signal.  The idea is that not all lines are created 
equal; it is counterproductive to give disproportionate weighting 
to data busses when small control lines are often more important 
to the correct operation of the design. 

Table 3. Implication matrix for proportional weighting by 
individual bits 

Src\Dst IF ID EX MEM WB 

IF X X 0.321 0 0.474 

ID X X 0.465 0.015 0.044 

EX X X 1 0.985 0.007 

MEM X X 0.214 1 0.474 

WB X X 0 0 1 
 



Table 4. Implication matrix for proportional weighting by 
signals (data busses collapsed to 1 signal) 

Src\Dst IF ID EX MEM WB 

IF X X 0.702 0 0.111 

ID X X 0.277 0.4 0.667 

EX X X 1 0.6 0.111 

MEM X X 0.021 1 0.111 

WB X X 0 0 1 
 

4.4.3 Results 
The results indicate that both proportional weighting schemes 
outperform unit and zero weighting.  Furthermore, the scheme 
with proportional weighting by signals (40.41 fails per test) 
performs better than weighting by individual lines (45.56 fails per 
test) by 11.3%. 

 

5. FUTURE WORK 
We feel there are opportunities for additional research into the 
types of design defects that tend to escape verification and are 
uncovered at runtime.  Specifically, we would like to have a better 
taxonomy of these defects, including local and interoperability 
defects, and a better understanding of frequencies of occurrence 
on leading-edge systems.  While we have anecdotal evidence and 
first-hand experience with these types of defects, low-level 
systematic data is lacking [2]. 

We would like to see our approach applied to non-processor 
systems in the future.  ASICs with a modular design and a method 
of runtime verification would be prime candidates.  The particular 
method of checking could be a checker processor, assertions, 
watchdog timers, etc.  Deriving implication values for the 
checkers would be more challenging than in the system analyzed 
here.      

Further study would be required to understand the possibilities for 
proportional weighting heuristics.  For instance, our scheme 
depends on signal fan-out, so systematic experiments could be 

performed on signals with various fan-outs.  Additionally, we 
believe our proportional weighting heuristic could be significantly 
extended, for instance by analyzing a logic cone at finer levels of 
granularity (i.e. levels lower than a module).   

We feel that the techniques presented in this paper would be well 
suited for research into hardware design diversity.  The idea of 
design diversity is to employ redundancy at the design level (via 
multiple unique variants of a design) to protect against design 
defects.  Prior research has demonstrated that certain types of 
systems can benefit from design diversity, including systems with 
strict requirements for high-availability, safety, or autonomy.  One 
incarnation of diversity called N-version programming [5] has the 
drawbacks of high cost and a possibility of correlated errors in 
multiple variants.  For modern distributed systems, a more 
promising technique is N-self-checking, which allows N variants 
to operate independently, each performing checking locally.  It 
remains to be seen whether the cost of developing N variants can 
be mitigated by the greater availability of IP libraries, open-source 
designs, and the like.  While typically used for software, design 
diversity holds promise for reconfigurable hardware designs as 
well [11][6].  A method is required for evaluating the utility of the 
various designs; the methods presented here may be along the 
lines of what is needed. 
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Figure 6. Experiment 3 Results.  Collapsing data busses into 
a single signal results in a better final design.  

Finally, while focused on design defects, out techniques may be 
just as applicable to measuring a design’s inherent predisposition 
to soft errors.  Future work could determine the feasibility of our 
high-level runtime confidence and refinement, as an alternative to 
existing techniques that deal with soft errors at lower levels. 

6. CONCLUSIONS 
We have presented a method for estimating the correctness of a 
processor-based design and its constituent modules based on 
runtime error information.  Our experiments have shown that by 
watching the outputs of less than all modules we are able to 
estimate which modules in a design are erroneous and give a 
quantified confidence in them. 

Based on our experimental data we feel that our metric for design 
confidence will be useful in a number of endeavors from design 
verification to autonomous system reconfiguration.   

Our module-level implication weighting is a method for assigning 
partial blame to modules which are not under direct test.  This will 
allow our confidence metric to be used in systems without full 
checker coverage.  We hope in future work to find better 
weighting schemes to more accurately model the complexities of 
designs with many interactions. 
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