12 United States Patent

Greathouse et al.

US009483379B2

US 9,483,379 B2
Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54) RANDOMLY BRANCHING USING
HARDWARE WATCHPOINTS

(71) Applicant: Advanced Micro Devices, Inc.,
Sunnyvale, CA (US)

(72) Inventors: Joseph L. Greathouse, Austin, TX
(US); David S. Christie, Austin, TX
(US)

(73) Assignee: Advanced Micro Devices, Inc.,
Sunnyvale, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 347 days.

(21) Appl. No.: 14/054,356

(22) Filed: Oct. 15, 2013
(65) Prior Publication Data
US 2015/0106602 Al Apr. 16, 2015
(51) Imt. CL
GO6F 9/38 (2006.01)
GO6F 11/36 (2006.01)
GO6F 11/30 (2006.01)
GO6F 11/34 (2006.01)
(52) U.S. CL
CPC GO6I 11/36 (2013.01); GO6F 11/3065

(2013.01); GO6F 11/3072 (2013.01); GO6F
11/3093 (2013.01); GO6F 11/3466 (2013.01);
GOGF 11/3471 (2013.01); GOGF 11/3476
(2013.01); GO6F 11/3495 (2013.01); GO6F
2201/81 (2013.01); GOGF 2201/865 (2013.01);
GOGF 2201/88 (2013.01)

(58) Field of Classification Search

None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,764,885 A * 6/1998 Sites ...coovvvvinnnnn. GO6F 11/3636
712/201
5,802,272 A * 9/1998 Sites ...covvierinnnnn.. GO6F 11/3466
714/45
5,909,578 A * 6/1999 Buzbee GO6F 11/3466
714/E11.2

5,913,043 A 6/1999 C(arter et al.
5,944,841 A * 8/1999 Christie GO6F 11/3466
714/38.11

(Continued)

OTHER PUBLICAITTONS

‘Modern Microprocessors—A 90 Minute Guide!” by Jason Robert
Carey Patterson, last updated Aug. 2012.*

(Continued)

Primary Examiner — Steven Snyder
(74) Attorney, Agent, or Firm — Rory D. Rankin;
Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

(57) ABSTRACT

A system and method for efliciently performing program
instrumentation. A processor processes nstructions stored 1n
a memory. The processor allocates a memory region for the
purpose of creating “random branches”™ 1n the computer code
utilizing existing memory access instructions. When the
processor processes a given instruction, the processor both
accesses a first location 1n the memory region and may
determine a condition 1s satisfied. In response, the processor
generates an interrupt. The corresponding interrupt handler
may transier control flow from the computer program to
instrumentation code. The condition may include a pointer
storing an address pointing to locations within the memory
region equals a given address after the point 1s updated.
Alternatively, the condition may include an updated data
value stored in a location pointed to by the given address
equals a threshold value.

20 Claims, 4 Drawing Sheets

~Control Flow Gragh
100

Conditional 8ranch Control

instruction baseden-. | Blogk

architectural register s %
g L e,

[}

‘‘‘‘‘‘‘‘

R -

"Rancom Branch” ’ . "“-\

instruction kased
on watchpoint | Block

interrupt caussd \'\\n"a, . 118 .;"

! Control G

by memaory

region access }

'//" ~,
',/ “EU \
. Contral

- e

"
-

...f*‘instrument;\.,
i Contml ‘::___
v Biock

T ——

.
-~
\-a._..r-"

US 9,483,379 B2

Page 2
(56) References Cited 2004/0133882 Al* 7/2004 Angel GO6F 11/3612
717/130
U.S. PATENT DOCUMENTS 2005/0155019 Al* 7/2005 Levine GO6F 11/3636
717/127
5,953,530 A * 9/1999 Rishi ..cccoeeeeennnnn. GO6F 11/3636 2005/0210454 Al* 9/2005 DeWitt, Jr. GO6F 11/3409
714/38.13 | 717/133
6,016,466 A * 1/2000 Guinther GO6F 11/3419 2007/0079294 Al* 4/2007 Knight GO6F 9/30003
702/186 717/130
6,186,677 B1* 2/2001 Angel GO6F 11/3624 2007/0226703 Al* 9/2007 Sharapov GO6F 12/0862
714/35 717/131
6,205,545 B1* 3/2001 Shah ..ocoovvvvevvennn.. GO6F 9/3807 2007/0260849 Al* 11/2007 Chenccoou... GO6F 9/5044
712/237 712/34
6,233,531 Bl 5/2001 Klassen et al. 2007/0260860 Al* 11/2007 Chen GO6F 11/3466
6,314,558 B1* 11/2001 Angel GOO6F 11/3612 712/227
714/35 2007/0261033 Al* 11/2007 Chen GOG6F 11/3466
6,643,842 B2* 11/2003 Angel GO6F 11/3612 717/130
714/35 2007/0261034 Al* 11/2007 Chen GO6F 11/3466
6,721,941 B1* 4/2004 Morshed GOO6F 11/3612 717/130
709/217 2008/0082969 Al* 4/2008 Agha GO6F 11/3684
6,728,949 B1* 4/2004 Bryant GOG6F 11/3409 717/130
712/233 2010/0037101 Al* 2/2010 Zakonov GO6F 11/3409
6,760,903 B1* 7/2004 Morshed GOG6F 11/3466 | 714/38.1
717/130 2011/0154297 Al1* 6/2011 Singh GO6F 11/3471
7,240,335 B2* 7/2007 Angel GO6F 11/3612 717/130
714/E11.209 2012/0011491 Al1* 1/2012 Eldar GO6F 11/3612
7,526,757 B2* 4/2009 Levine GOO6F 11/3636 717/130
T17/127 2012/0084537 Al* 4/2012 Indukuru GO6F 12/0862
7,698,692 B1* 4/2010 Garud GOG6F 11/3466 | 712/227
714/38.14 2013/0247008 Al* 9/2013 Mitran GO6F 9/30058
7,814,466 B2* 10/2010 Chen GOG6F 11/3466 | 717/130
712/227 2014/0325193 Al* 10/2014 Singh GO6F 11/3471
7,890,941 B1* 2/2011 Garud GOG6F 8/443 712/228
| 712/228
7987,453 B2* 7/2011 DeWitt, Jr. GO6F %1/23/42132 OTHER PURI ICATIONS
K
8,051,332 B2* 112011 Zakonov GO6F7IIZ?3480? Drongowski, Paul J., “Instruction-Based Sampling: A New Pertor-
8,245,199 B2* 8/2012 Chen, GOGF 11/3466 ~ mance Analysis Technique for AMD Family 10h Processors”,
717/130 Advanced Micro Devices, Inc., Nov. 16, 2007, 14 pages.
8,479,052 B2* 7/2013 Zakonov GO6F 11/3409 Lee, et al., “Branch-on-Random”, Proceedings of the 6th Annual
714/38.1 IEEE/ACM International Symposium on Code Generation and
8,615,742 B2* 12/2013 Indukuru GOOF 8/4442 Optimization, Apr. 5-10, 2008, 10 pages, ACM, New York, NY,
| 717/124 USA.
8,832,666 B2* 9/2014 Singh ... GO6F %/7%1; é Dean, et al., “ProfileMe: Hardware Support for Instruction-Level
Profiling on Out-of-Order Processors”, MICRO 30 Proceedings of
K b/
S804l B2 V2014 Zakonov ... GO6F711Z?3480? the 30th Annual ACM/IEEE International Symposium on
2001/0047510 A1* 11/2001 Angel ...coooo........ GO6F 11/36i2 Microarchitecture, Dec. 1-3, 1997, 12 pages, IEEE Computer Soci-
717/128 ety, Washington, DC, USA.
2002/0095661 Al* 7/2002 Angel GOO6F 11/3612 . .
717/130 * cited by examiner

U.S. Patent Nov. 1, 2016

Sheet 1 of 4

US 9,483,379 B2

_________________ Control Flow Graph
? 100

. / g Ass
Conditional Branch Oontrol

instruction basea on - | Riock
architectural register "a 110

“Random Branch’ Ty
nstruction based [Controf
on watchpoint Sloek

nterrupt caused .\ 445
DY memory RN

region access

— T — -
- -
-
-

14 {:; 33
¢ Control
BlocK

Y
Y /
) 1 1 /
" .
\\ MWW WM WV oy
~ -
e B
- -
-

—

e .

//J \\
- LIS
Sonterrupt’
3 '\

HEH
P Control
Biock

, 1t Fs:'
Conirod
‘~. Riock

y
I\
\' 1 2 G
N
\' LI S T

)
"’I
¥ { i \
- ontro \
I
) l Iﬁm—n
-~ 1 {
a {20 .*
| ')
[S
5 F
" 127 "
Ay ,!
\\ ‘/"
. :
- . -
.\\
\\: . -
LN o~
\ .

“

/“Instrument™,
o Control
ZHOCK

!
z f
1 2 '/'
— #
.
. o
S

U.S. Patent Sheet 2 of 4

Nov. 1, 2016 US 9,483,379 B2

Metnod 200

..

/ Allocate a memory region o be

el

-

...
‘‘

Allocate a pointer to be associated |
with the “random branch’”.
£04

Set a walchpoini on a given location |

in the memaory region.
206

Select focations in the program

code for instrumentation code to be |

exacuiad.
208

insert instructions at the seifected

locations that increment the pointer |

and access the region of memory.
210

- assaciatsd with a “random branch”. §

 Initialize the pointer to a random |
iocation in the memory region. §
21

rocess mnstructions of the
program coge,
#1714

cc
uu

sssss
44444

~Determing ™
an instruction ™
o rosses the re ggo "::::::‘ o

NG

‘‘‘‘‘‘‘
" -

increment and dereference the
pointer,
218

ccc
--

o~ Daterming s
" a watchpoint fauft
OCOUrs?

NO

.....
‘‘‘‘‘‘‘

Convey indication {0 process
instrumentation code.
2o2

SO

U.S. Patent

Nov. 1, 2016

7 Aflocate a memory region to be
associated with one or more

“random branchnes’”,
3}

Sheet 3 of 4

Method 300

initialize the one or more
variables stored in the memory §
region. :

Set an associated walchpoint

that points in the memaory region.

204

-
--
--

| Sst an associated watchpoint data |

reqister to store a threshold.
306

safect Iocalions in the program

code for insirurnentafion coge o He

axeniited.

208

fnsert instructions at the seiected
iocations that undale a variable
stored i the memaory region.
310

address register to store a pointer |

FiG. 3

Frocess instructions of the
Drogram code.
374

7 Detect ™
" & variable updats

M
-
b,
-
b
h
-
»
'4
e
o'
S
ate
()
.

US 9,483,379 B2

snstruction?
| 316

-

s

Yes

" Determing ™
“the updated variable ™
matches the
. threshold? &
318 &

NG

Convey indicalion o process
instrumentation code.

3l

uuuuuuuu
T ..

U.S. Patent Nov. 1, 2016 Sheet 4 of 4 US 9,483.379 B2

Computing System 400

Miermnory

Subsystem
412

Frocessor

414

System us
418

QQ
“-

interface 41

|
i z
| g
i Cperating System | i
| 422 5 |
| |
; §
a z
| Binary Code Eng{rumentataan ;
g 424 nary Gode
| sl 426 §
| |
e e s o o e s o s 2 o S o s 2 |

FiG. 4

US 9,483,379 B2

1

RANDOMLY BRANCHING USING
HARDWARE WATCHPOINTS

BACKGROUND

1. Field of the Invention

This mvention relates to high performance computing
systems, and more particularly, to efliciently performing
program instrumentation.

2. Background

An understanding of the dynamic behavior of software
applications allows software programmers to write the appli-
cations 1n both an eflicient and a high-performance manner.
For this reason, software programmers at times add addi-
tional code to developing applications. The additional code
may include instrumentation code and analysis code that
communicates statistics and other information about the
behavior of the application as it 1s processed. Patterns and
particular events may be 1dentified and characterized. How-
ever, as both the speed and the functionality of processors
increase, 1t has become more difticult to collect information
about the dynamic behavior of the applications.

The collection of information about application dynamic
behavior may include a large number of trace instructions, a
large amount of statistics, and an appreciable amount of
overhead to perform the collection. The additional code may
reduce the execution time of an application by an order of
magnitude. A computer or server may run particular code for
hours to test all major code paths. Straightforward instru-
mentation may increase the run time to days or even weeks.

Due to the problems identified above, the instrumentation
and analysis code may be sampled to reduce the drawbacks
of collecting dynamic behavior information. A relatively
small percentage of the dynamically encountered instrumen-
tation code 1s actually executed. The selection of when to
execute the dynamically encountered instrumentation code
may be performed 1n a random manner. Unfortunately, the
selection process or performing the sampling decisions
consumes an appreciable amount of time and cost.

Generating and comparing random numbers 1n software 1s
non-trivial. Similarly, moving the sampling decisions to
hardware consumes on-die real estate as circuitry 1s added to
perform random number generation and connecting the
results to other parts of the processor. Additionally, new
istructions may be added to the instruction set architecture
(ISA) to offer support, which 1s a non-trivial effort. Another
approach may include using hardware to randomly tag an
instruction and gather microarchitecture-level information
about the processing of the tagged instruction. However,
such an approach utilizes hard-coded analysis 1n the pro-
cessor, rather than user-defined custom instrumentation
code. Further, such an approach analyzes a single instruction
versus multiple instructions of a software-based approach.

In view of the above, eflicient methods and systems for
efliciently performing program instrumentation are desired.

SUMMARY OF EMBODIMENTS

Systems and methods for efliciently performing program
instrumentation are contemplated. In various embodiments,
a computing system i1ncludes a memory for storing instruc-
tions of a computer program and a processor for processing
the stored instructions. The processor allocates a memory
region for the purpose of creating “random branches” 1n the
computer code utilizing existing memory access instruc-
tions. When the processor processes a given instruction, the
processor may both access a first location 1n the memory

10

15

20

25

30

35

40

45

50

55

60

65

2

region and determine a condition i1s satisfied. In response,
the processor may generate an interrupt. The corresponding
interrupt handler may transier control flow from the com-
puter program to nstrumentation code.

In some embodiments, the processor may include a
watchpoint address register and a watchpoint data register,
for example, among pre-existing debug registers already on
the die. The processor may set a watchpoint address register
to a first address pointing to a first location in the memory
region. For example, the first pointed-to location may be the
final location in the memory region. The processor may
allocate a pointer that stores an address pointing to one of the
multiple locations 1n the memory region. The processor may
initialize the pointer to store a second address pointing to a
second location of the multiple locations in the memory
region. When the given instruction 1s executed, the pointer
may be updated to store a third address pointing to a third
location of the multiple locations in the memory region. In
some embodiments, the processor may determine the con-
dition 1s satisfied when the first address and the third address
are the same. and generate the interrupt responsive to
determining the first address and the third address are the
same.

In other embodiments, 1n addition to setting the watch-
point address register, the processor may 1nitialize each of a
watchpoint data register and the first location 1n the memory
region to store a threshold data value and a first data value,
respectively. When the given instruction 1s executed, the first
location may be updated to store a second data value. The
processor may determine the condition 1s satisfied and
generate the interrupt responsive to determining the second
data value and the threshold data value are the same.

These and other embodiments will be further appreciated
upon reference to the following description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a generalized block diagram of one embodiment
of a control flow graph.

FIG. 2 1s a generalized flow diagram of one embodiment
of a method for efliciently performing program instrumen-
tation.

FIG. 3 1s a generalized flow diagram of another embodi-
ment of a method for efliciently performing program instru-
mentation.

FIG. 4 1s a generalized block diagram of one embodiment
of a computing system.

While the invention 1s susceptible to various modifica-
tions and alternative forms, specific embodiments are shown
by way of example in the drawings and are herein described
in detail. It should be understood, however, that drawings
and detailed description thereto are not intended to limit the
invention to the particular form disclosed, but on the con-
trary, the invention 1s to cover all modifications, equivalents
and alternatives falling within the spirit and scope of the
present invention as defined by the appended claims.

DETAILED DESCRIPTION OF
EMBODIMENT(S)

In the following description, numerous specific details are
set forth to provide a thorough understanding of the present
invention. However, one having ordinary skill in the art
should recognize that the invention might be practiced
without these specific details. In some instances, well-
known circuits, structures, and techniques have not been
shown 1n detail to avoid obscuring the present invention.

US 9,483,379 B2

3

Referring to FIG. 1, one embodiment of a control flow
graph 100 1s shown. Control blocks 110-124 represent
control blocks within a software application or a subroutine.
The arrows represent paths. The control flow graph 100 may
represent a complete graph or a section of a larger control
flow graph. Control block 110, or Block A for simpler
demonstration, may represent an entry-point-control-block.
Control block 122, or Block F for simpler demonstration,
may represent an exit-point-control-block. Alternatively,
Blocks A and F may connect to other control blocks not
shown and the entry-point-control-block(s) and exit-point-
control-block(s) are located elsewhere in a larger control
flow graph.

The control blocks (CBs) A and D may represent multiple
exit-point-control-blocks. For example, a path exiting CB A
may go to CB B or go to CB C. A control flow instruction
at the end of CB A may cause a path to CB B to be taken
rather than a path to CB C. Alternatively, during another
iteration, the control flow instruction at the end of CB A may
cause a path to CB C to be taken rather than a path to CB
B. Although not shown, the control flow graph (CFG) 100
may include multiple entry-point-control-blocks.

The control flow instruction at the end of CB A may be
dependent on a value stored 1n a particular architectural
register. An 1dentifier of the particular architectural register
may be specified 1n the instruction. The control flow 1nstruc-
tion at the end of CB A may include one of a conditional
branch instruction, an indirect jump 1nstruction, and so forth.

Paths within the CFG 100 are listed in program sequence
order. One path within the CFG 100 may be represented by
control blocks (CBs) A, B, D, E and F. Here, the exit of CB
A goes along the path to CB B. A second path may be
represented by CBs A, C, D, E and F. Here, the exit of CB
A goes along the path to CB C. A third path within the CFG
100 may be represented by CBs A, B, C, D, Interrupt,
Instrument, Interrupt and F. Similar to CB A, the CB D has
multiple exit points. For example, a path exiting CB D may
g0 to CB E or go to CB Interrupt.

The occurrence of one or more given instructions at the
end of CB D may cause a path to CB E to be taken rather
than a path to CB Interrupt. Alternatively, during another
loop 1iteration, the occurrence of the given one or more
instructions at the end of CB D may cause a path to CB
Interrupt to be taken rather than a path to CB E. Unlike the
control flow 1nstruction at the end of CB A, the given one or
more 1nstructions at the end of CB D may not be control flow
istructions. The given one or more 1nstructions at the end
of CB D may not include a condition to test in order to cause
a selection of a path in CFG 100 to take. Rather, the
occurrence of the given one or more instructions may trigger
the selection logic. When processed, the given one or more
instructions may access and may update a location 1n a given
memory region. The access or update of the memory region
demarcated by a software programmer may cause watch-
point hardware to generate an interrupt.

The memory region and at least one corresponding
pointer are allocated in the computer program. Examples of
the given one or more instructions that may generate an
interrupt include a pointer update instruction and a variable
update instruction. In various embodiments, the update may
be an increment operation. Watchpoint hardware may
include debug registers, data address compare registers, data
address breakpoint registers, and so forth. In some embodi-
ments, a processor core may include watchpoint registers
that store virtual memory addresses. Control logic associ-
ated with these watchpoint registers may be set to inspect or
“watch” a number of bytes after a stored virtual address

10

15

20

25

30

35

40

45

50

55

60

65

4

value. In some embodiments, the number of bytes may range
between 1 and 8 bytes. If the control logic 1s enabled, then
an interrupt may be generated responsive to determining a
location matching a “watched” byte 1s read, written, or
executed.

In some embodiments, the corresponding pointer may be
initialized to a random location within the memory region.
As used herein, “random” may refer to an output of a
pseudorandom algorithm. A watchpoint may be set on a
given address within the memory region. In some examples,
the final address within the memory region may be selected
for the watchpoint. A location within the computer program
1s selected to execute a random branch to other code, such
as 1nstrumentation code. At the selected location in the
computer program, a set of instructions may be inserted that
update the corresponding pointer and access a location in the
memory region associated with the updated pointer. The
update of the pointer may be an increment of the pointer.

If the updated pointer points to the watchpoint location,
then the memory access causes the watchpoint hardware to
generate an interrupt. The interrupt handler may reset the
pomnter to another random location within the memory
region. The interrupt handler may transfer control tflow from
the computer program to other code, such as instrumentation
code.

In other embodiments, an additional watchpoint may be
set on a data value stored in a location pointed to by the
watchpoint pointer. A watchpoint data register may store a
watchpoint data value. Again, a location within the computer
program 1s selected to execute a random branch to other
code, such as instrumentation code. At the selected location
in the computer program, a set of instructions may be
inserted that update the corresponding pointer and access a
location 1n the memory region associated with the updated
pointer, wherein the access updates the data value stored in
the location.

The update performed during the memory access may
increment or decrement the stored data value. The updated
data value may be compared to the stored watchpoint data
value. If a match 1s found, the watchpoint hardware may
generate an interrupt. The interrupt handler may reset the
stored data value to a random value between zero and the
stored watchpoint data value. In addition, the interrupt
handler may reset the pointer to another random location
within the memory region. Further, the interrupt handler
may transier control flow from the computer program to
other code, such as instrumentation code.

During the generation of an interrupt in either of the two
above cases, processing within a corresponding processor
may be interrupted and control flow may be sent to the
interrupt handler, which 1s represented as CB Interrupt in
CFG 100. By setting an 1nitial value stored 1n the pointer or
the location pointed to by the pointer, 1t 1s possible to control
how many events occur before a corresponding interrupt
may be generated. Since the 1mitial value may be a random
number, the generation of the corresponding interrupt is
randomized. The corresponding interrupt handler may trans-
fer control tlow of the processing of the program code to
process other instructions rather than fall-through instruc-
tions in the program code. For example, the control flow
may be transierred from CB D to CB Interrupt to CB
Instrument, rather than from CB D to CB E. Therefore, a
“random branch” 1s created at the location of the given
instruction in the program code.

The change 1n the control flow causes the set of instruc-
tions at the selected location 1n the program code to behave
as a “random branch”. A software programmer may have

US 9,483,379 B2

S

placed the set of instructions at the end of CB D 1n order to
create the “random branch”. Therefore, the software pro-
grammer may predetermine particular interrupts may be
taken at selected locations within the program code.

The code 1n the CB Instrument may include code to
generate traces. In addition the instrumentation code 1n the
CB Interrupt may monitor and collect information for a
variety of multiple instruction types regarding branch pre-
diction techniques, cache memory subsystem modeling,
fault tolerance studies, memory access patterns and memory
leaks, loop iterations, inter-procedural paths, and so forth.
The instrumentation code collects mformation about a plu-
rality of instructions in the computer program. When the
instrumentation code completes, control flow may transfer
back to the CB Interrupt. The interrupt handler may reset the
pointer to the memory region and the data value stored in the
location pointed to by the pointer to random values and
transfer control back to the program code, such as to CB E.

Turning now to FIG. 2, one embodiment of a method 200
for eflicient memory access instruction instrumentation 1s
shown. For purposes of discussion, the steps 1n this embodi-
ment and subsequent embodiments of methods described
later are shown 1n sequential order. However, some steps
may occur 1n a different order than shown, some steps may
be performed concurrently, some steps may be combined
with other steps, and some steps may be absent 1n another
embodiment.

In block 202, a memory region may be allocated for use
in creating a random branch 1n a computer program. The
memory region may be a contiguous region of memory. In
block 204, a pointer to be associated with the “random
branch™ may be allocated. The pointer may be used to point
to locations within the memory region. Additional pointers
may be allocated to point to locations within the memory
region. Each of the one or more pointers may be associated
with a separate “random branch” in the computer program.

In block 206, a watchpoint may be set on an address
pointing to a given location in the memory region. For
example, a watchpoint address register may be loaded with
a given address value. The final address may select as the
watchpoint although other addresses and locations within
the memory region may be selected. If multiple pointers are
used to point to the memory region, then each of the multiple
pointers may be compared to this watchpoint address. Fur-
ther, the given address value stored in the watchpoint
address register may have some bits of an address masked
out or 1gnored. Therefore, a larger portion of the memory
region may be “watched” or inspected, rather than a single
location.

The larger portion being “watched” or inspected may
include a set of size-aligned addresses. For example, the
least-significant 12 bits of a value stored in the watchpoint
address register may be zeroed or i1gnored. Now a given
4-kilobyte (KB) page within the memory region 1s being
“watched” rather than a single location. Any touches (read,
write, execution) of a location within the 4 KB page may
cause a potential interrupt to be generated, rather than a
touch of a single location.

In block 208, a software programmer may select a type of
instrumentation and analysis to perform 1n instrumentation
code and select the locations 1n the program code to perform
the analysis and collection of information. In block 210, one
or more 1nstructions may be inserted in given locations in the
program code for transferring control flow to other code to
be executed other than the program code. The other code
may be instrumentation code. The one or more 1nstructions
may be 1nserted i1n the program code at these selected

10

15

20

25

30

35

40

45

50

55

60

65

6

locations. The one or more instructions inserted in the
selected locations may update one of the one or more
pointers pointing to a location within the memory region.
The one or more 1nstructions may also update a data value
stored 1n the location pointed to by the updated pointer.

In block 212, each one of the one or more pointers may
be mitialized to a random location 1n the memory region. In
block 214, the instructions in the program code are pro-
cessed. The instructions may be fetched and decoded, source
and destination registers may be renamed, and the instruc-
tions may be executed and retired. One or more processor
cores may be used for processing the instructions of the
program code.

If 1t 1s determined an instruction accesses the memory
region (conditional block 216), then in block 218, a corre-
sponding one of the one or more pointers may be updated
and dereferenced. The update may include incrementing the
corresponding pointer. The updated pointer may be com-
pared to the value stored in the watchpoint address register.
The comparison may occur for the entire value stored 1n the
watchpoint address register. Alternatively, the comparison
may occur for a portion of the value stored 1n the watchpoint
address register 1n order to “watch” a larger portion of the
memory region. The comparison may occur for the entire
value stored in the watchpoint address register wherein a
portion of the address 1s zeroed, such as a number of the
least-significant bits of the address. A match may indicate a
watchpoint fault occurs.

If 1t 1s determined a watchpoint fault occurs (conditional
block 220), then in block then in block 222, an indication
may be conveyed to process instrumentation code. For
example, the mterrupt handler may transter control flow to
user-defined custom instrumentation code. When the instru-
mentation and analysis code completes, control flow may
return to the interrupt handler. The interrupt handler may
reset the one or more pointers to store random values that
point to other random locations within the memory region.
Afterward, control flow may be transierred back to the
program code at a location following the given one or more
instructions that update a pointer and access the memory
region.

Turning now to FIG. 3, another embodiment of a method
300 for eflicient memory access instruction instrumentation
1s shown. For purposes of discussion, the steps in this
embodiment and subsequent embodiments of methods
described later are shown in sequential order. However,
some steps may occur 1n a different order than shown, some
steps may be performed concurrently, some steps may be
combined with other steps, and some steps may be absent 1n
another embodiment.

In block 302, a memory region may be allocated for use
in creating a “random branch™ 1n a computer program. The
memory region may be a contiguous region of memory. A
pointer to be associated with a given “random branch” may
be allocated. The pointer may be used to point to locations
within the memory region. The given location may store a
value for a variable. In some embodiments, multiple pointers
may be allocated to point to multiple locations within the
memory region.

In block 304, a watchpoint address register may be loaded
with a pointer value that points to one or more locations
within the memory region. In some embodiments, the full
watchpoint address register 1s used and the stored pointer
value points to a single memory location within the memory
region. In other embodiments, one or more least-significant
bits of the watchpoint address register may be masked or
ignored. Accordingly, the stored pointer value may point to

US 9,483,379 B2

7

a portion of the memory region larger than a single memory
location. For example, the least signmificant 12 bits of the
watchpoint address register may be 1gnored or masked with
zeroes. In this example, the masked pointer value now points
to a 4 KB page within the memory region.

Continuing with the above example, i each variable 1s 8
bytes, then the 4 KB page within the memory region stores
512 vaniables. Each of the 512 vanables may be used for a
separate “random branch”. As described shortly, a software
programmer may utilize 512 different “random branch”
mstructions in the computer program. Each one of the
“random branch’ instructions may update a respective one
of the 512 vanables 1n the 4 KB page within the memory
region. Similarly, 1f each variable 1s 4 bytes, then the 4 KB
page within the memory region stores 1,024 variables, each
variable being used for a separate “random branch”. Each
variable may be 1mnitialized to a different random value and
may be updated independently.

In block 306, a watchpoint data register may be loaded
with a threshold value. The threshold may be compared to a
variable stored in the memory region when the memory
region 1s accessed. In some embodiments, a variable stored
in a memory location pointed to by the watchpoint address
register 1s 1nitialized to zero and the threshold stored in the
watchpoint data register 1s 1nitialized to a random value. The
variable may be updated, such as incremented, by an instruc-
tion located at a “random branch” location 1n the computer
program. When the updated variable matches the threshold,
an interrupt may be generated. Therefore, the variable may
be updated a random number of times during program
execution before the interrupt 1s generated.

If multiple variables are used, such as 512 varniables 1n a
4 KB page as described 1n an earlier example, then each of
the multiple vaniables may be 1nitialized to zero. The prob-
ability of taking a “random branch” may be equal for each
of the multiple variables, since the watchpoint data register
1s used for comparisons for each of the multiple variables.
Alternatively, each of the multiple variables may be 1nitial-
1zed to a different respective random value. Now, each of the
multiple variables has a different probability of taking a
“random branch™ during program execution.

In block 308, a software programmer may select a type of
instrumentation and analysis to perform in instrumentation
code and select the locations 1n the program code to perform
the analysis and collection of information. In block 310, one
or more 1nstructions may be inserted in given locations in the
program code for transferring control flow to other code to
be executed other than the program code. The other code
may be instrumentation code. The one or more 1nstructions

may be inserted 1n the program code at these selected
locations. The one or more instructions inserted in the
selected locations may update one or more variables. In
addition, the one or more instructions may perform any
necessary saves and restores of architected registers that are
overwritten by the one or more instructions updating vari-
ables. The variables may be pointed to by a full value or a
masked value stored 1n the watchpoint address register.

In block 312, each of the one or more variables pointed to
by a full value or a masked value stored 1n the watchpoint
address register 1s initialized. As described earlier, each of
the one or more variables may be 1mtialized to zero. Alter-
natively, the one or more variables may be mnitialized to a
random value by a random generation function. In block
314, the mstructions 1n the program code are processed. The
instructions may be fetched and decoded, source and desti-
nation registers may be renamed, and the instructions may

10

15

20

25

30

35

40

45

50

55

60

65

8

be executed and retired. One or more processor cores may
be used for processing the instructions of the program code.

One or more memory locations within the allocated
memory region may be “watched” by comparing pointer
values to the watchpoint address register or a masked
version of the value stored 1n the watchpoint address regis-
ter. If 1t 1s determined an instruction updates a variable
stored 1n a “watched” memory location in the memory
region (conditional block 316), then the updated variable
may be compared to the threshold stored 1n the watchpoint
data register.

If the updated variable matches the threshold (conditional
block 318), then 1n block 320, an indication may be con-
veyed to process instrumentation code. For example, the
interrupt handler may transfer control flow to user-defined
custom 1nstrumentation code. When the instrumentation and
analysis code completes, control flow may return to the
interrupt handler. The interrupt handler may reset the one or
more pointers to store random values that point to other
random locations within the memory region. Afterward,
control flow may be transferred back to the program code at
a location following the given one or more instructions that
update a pointer and access the memory region.

Turning now to FIG. 4, a generalized block diagram
illustrating one embodiment of a computing system 400 1s
shown. As shown, the computing system 400 includes
processing node 410 and system memory 420. In various
embodiments, the processing node 410 includes a system
bus 416, a processor 414, and a memory subsystem 412.
Additionally, the processing node 410 may include the
interface 418 for connecting to input/output (I/O) peripheral
devices, to the system memory 420 and to other systems.
Although a single processor 414 1s shown, the processing
node 410 may include multiple processors, each with one or
more processor cores. The multiple processors may be
homogenous or heterogeneous microarchitecture designs.

The system memory 420 may include at least an operating
system (OS) 422, binary code 424 corresponding to a
software application, and istrumentation binary code 426.
The OS 422 may generally manage the operation of the
hardware 1n the processing node 410, which relieves appli-
cation programs from having to manage details such as
allocating regions of memory for a software application. The
multiple processes of a compiled software application may
require 1ts own resources such as an 1image of memory, or an
instance of instructions and data before application execu-
tion. Each process may comprise process-specific informa-
tion such as address space that addresses the code, data, and
possibly a heap and a stack; variables 1n data and control
registers such as stack pointers, general and floating-point
registers, program counter, and otherwise; and operating
system descriptors such as stdin, stdout, and otherwise, and
security attributes such as processor owner and the process’
set of permissions.

The binary code 424 may include compiled instructions of
a software application developed by a software programmer.
Additionally, the instrumentation binary code 426 may
include compiled instructions of instrumentation code
developed by the software programmer. Copies of portions
of both the binary code 424 and the instrumentation binary
code 426 may also be stored 1n one or more levels of a cache
subsystem within the memory subsystem 412.

The binary instrumentation of code may be performed
statically or dynamically. For either manner, both data flow
and control flow analyses are performed to yield a data tlow
graph and a control flow graph, respectively. For dynamic
instrumentation, the loading and executing of object code

US 9,483,379 B2

9

and 1nstrumentation object code may occur 1n response to
generated interrupts. The interrupts may be generated based
on a comparison of an updated variable to a given threshold
where matches occur randomly. Instrumentation libraries
and tools may be used to create the istrumentation binary
code 426.

The instrumentation binary code 426 may be used to
provide statistics for performance studies or debugging
techniques. When control flow 1s transierred from the soft-
ware application algorithm used in the binary code 424 to
the algorithms in the instrumentation binary code 426,
program characteristic information may be relayed by the
analysis routines to other software analysis units, which may
determine errors and performance during execution. Alter-
natively, the program characteristic information i1s conveyed
to storage for later analysis and inspection.

The processing node 410 may include one of various
computing products such as a desktop computer, a server, a
tablet computer, a laptop computer, and so forth. For ease of
illustration, the computing system 400 does not include all
examples of functional blocks, control logic, and interfaces
required both within and outside the computer system 110.

In various embodiments, the illustrated functionality of
the processing node 410 1s incorporated upon a single
integrated circuit. In other embodiments, the illustrated
functionality of the processing node 410 may be provided on
a system-on-chip (SOC), on separate semiconductor chips
on a motherboard or card, or other. Although a single
processor 414 1s shown, the processing node 410 may
include multiple processors. The other processors may
include a graphics processing unit (GPU), another type of
single-instruction-multiple-data (SIMD) core, a digital sig-
nal processor (DSP), an application-specific integrated cir-
cuit (ASIC), other general-purpose processors, and so forth.
The processor 414 may include multiple processor cores.
Each processor core may include circuitry for executing
istructions according to a predefined instruction set. For
example, the x86® 1nstruction set archutecture (ISA) may be
selected. Alternatively, the x86-64®, Alpha®, PowerPC®,
MIPS®, SPARC®, PA-RISC®, or any other 1nstruction set
architecture may be selected.

Generally speaking, the processor 414 accesses memory
storage for data and instructions or commands. In some
embodiments, a cache memory subsystem implemented as a
.1 cache structure configured to store blocks of data, and
possibly with an additional .2 cache structure, 1s integrated
within the processor 414. Memory subsystem 412 may be
implemented as a L2 or L3 cache structure and may be
directly coupled to the processor 414. If a requested block 1s
not found in an integrated cache structure or memory
subsystem 412, then a read request may be generated and
transmitted to a memory controller in order to access outside
memory to which the missing block 1s mapped. The func-
tionality of a memory controller may be included in the
interface 418.

The interface 418 may follow memory channel protocols
for determining values used for information transfer, such as
a number of data transfers per clock cycle, signal voltage
levels, signal timings, signal and clock phases and clock
frequencies. Additionally, the interface 418 may include
request queues for queuing memory requests. The off-die
memory may include one of multiple types of dynamic
random access memories (DRAMSs). The DRAM may be
further connected to lower levels of a memory hierarchy,
such as system memory 420, which may be a disk memory.

Any integrated memory within the processor 414, the
memory subsystem 412, and any off-die memory may

10

15

20

25

30

35

40

45

50

55

60

65

10

comprise any suitable memory devices 1n addition to a cache
structure. For example, these memories may comprise one
or more RAMBUS dynamic random access memories
(DRAMSs), synchronous DRAMs (SDRAMs), DRAM, static
RAM, sequential storage elements such as flip-tlops and
latches, etc.

The system bus 416 may be configured to respond to
control packets recerved on links to which the processing
node 410 1s coupled, to generate control packets in response
to the processor 414 and/or memory subsystems 412, to
generate probe commands and response packets in response
to transactions selected by a memory controller not shown,
and to route packets through interface logic 418. The inter-
face (IF) 418 may include logic to receive packets and
synchronize the packets to an internal clock used by system
bus 416. The interface 418 may include builers and queues
for storing packets to be processed or transmitted. The
computer system 400 may employ any suitable flow control
mechanism for transmitting data.

It 1s noted that the above-described embodiments may
comprise software. In such an embodiment, the program
instructions that implement the methods and/or mechanisms
may be conveyed or stored on a non-transitory computer
readable medium. Numerous types of media which are
configured to store program instructions are available and
include hard disks, floppy disks, CD-ROM, DVD, flash
memory, Programmable ROMs (PROM), random access
memory (RAM), and various other forms of volatile or
non-volatile storage. Generally speaking, a computer acces-
sible storage medium may include any storage media acces-
sible by a computer during use to provide instructions and/or
data to the computer. For example, a computer accessible
storage medium may include storage media such as mag-
netic or optical media, e.g., disk (fixed or removable), tape,
CD-ROM, or DVD-ROM, CD-R, CD-RW, DVD-R, DVD-
RW, or Blu-Ray. Storage media may further include volatile

or non-volatile memory media such as RAM (e.g. synchro-
nous dynamic RAM (SDRAM), double data rate (DDR,

DDR2, DDR3, etc.) SDRAM, low-power DDR (LPDDR2,
etc.) SDRAM, Rambus DRAM (RDRAM), static RAM
(SRAM), etc.), ROM, Flash memory, non-volatile memory
(e.g. Flash memory) accessible via a peripheral interface
such as the Umniversal Serial Bus (USB) terface, efc.
Storage media may include microelectromechanical systems
(MEMS), as well as storage media accessible via a commu-
nication medium such as a network and/or a wireless link.

Additionally, program instructions may comprise behav-
ioral-level description or register-transfer level (RTL)
descriptions of the hardware functionality in a high level
programming language such as C, or a design language
(HDL) such as Verilog, VHDL, or database format such as
GDS II stream format (GDSII). In some cases the descrip-
tion may be read by a synthesis tool, which may synthesize
the description to produce a netlist comprising a list of gates
from a synthesis library. The netlist comprises a set of gates,
which also represent the functionality of the hardware
comprising the system. The netlist may then be placed and
routed to produce a data set describing geometric shapes to
be applied to masks. The masks may then be used 1n various
semiconductor fabrication steps to produce a semiconductor
circuit or circuits corresponding to the system. Alternatively,
the instructions on the computer accessible storage medium
may be the netlist (with or without the synthesis library) or
the data set, as desired. Additionally, the instructions may be
utilized for purposes of emulation by a hardware based type
emulator from such vendors as Cadence®, EVE®, and
Mentor Graphics®.

US 9,483,379 B2

11

Although the embodiments above have been described 1n
considerable detail, numerous variations and modifications
will become apparent to those skilled 1n the art once the
above disclosure 1s fully appreciated. It 1s intended that the
following claims be interpreted to embrace all such varia-
tions and modifications.

What 1s claimed 1s:

1. A computing system comprising;:

a memory configured to store a computer program;

a processor coupled to the memory, wherein the processor

1s configured to:
process instructions of the stored computer program;
allocate 1n the memory a memory region comprising a
plurality of locations;
store a first address 1n a watchpoint address register,
wherein the first address 1dentifies a given location of
the plurality of locations;
initialize a pointer with a second address that identifies
a random location of the plurality of locations; and
responsive to determining a predetermined instruction
1S being processed:
compare the first address to the second address; and
forego processing of instructions following the pre-
determined 1instruction and process instrumenta-
tion code, in further response to determining the
first address matches the second address.

2. The computing system as recited in claim 1, wherein in
turther response to determining the predetermined instruc-
tion 1s being processed and the first address does not match
the second address, the processor 1s further configured to
process an instruction following the predetermined instruc-
tion in program order without processing the instrumenta-
tion code.

3. The computing system as recited 1n claim 1, wherein
the processor 1s further configured to update the second
address with a new address that identifies a new location of
the plurality of locations.

4. The computing system as recited 1n claim 3, wherein
the processor 1s configured to update the second address by
either incrementing the second address or decrementing the
second address.

5. The computing system as recited in claim 1, wherein to
forego processing of instructions following the predeter-
mined 1nstruction and process the instrumentation code, the
processor 1s further configured to transier control flow from
the computer program to the instrumentation code.

6. The computing system as recited in claim 1, wherein 1n
response to detecting execution of the instrumentation code
has completed, the processor 1s further configured to:

update the second address with a new address that 1den-

tifies a random location of the plurality of locations;
and

transfer control flow from the instrumentation code to

instructions following the predetermined instruction 1n
the computer program.

7. The computing system as recited in claim 2, wherein
the processor 1s further configured to:

initialize a watchpoint data register to store a threshold

data value; and

initialize a first data value stored in the given location

identified by the first address to store a random number
between zero and the threshold data value.

8. The computing system as recited 1n claim 7, wherein
the processor 1s further configured to:

compare the threshold data value to the first data value

responsive to determining the first address matches the
second address; and

5

10

15

20

25

30

35

40

45

50

55

60

65

12

forego processing of instructions following the predeter-
mined instruction and process the instrumentation code

in response to determinming the first data value matches
the threshold data value.

9. The computing system as recited in claim 8, wherein 1n
response to determining the first data value does not match
the threshold data value, the processor 1s further configured
to process an i1nstruction following the predetermined
instruction in program order without processing the instru-
mentation code.

10. A method executable by at least one processor 1n a
computing system, the method comprising;

processing instructions of a computer program stored 1n a

memory;

allocating 1n the memory a memory region comprising a

plurality of locations;

storing a first address 1n a watchpoint address register,

wherein the first address 1dentifies a given location of
the plurality of locations;

initializing a pointer with a second address that 1dentifies

a random location of the plurality of locations; and

responsive to determining a predetermined instruction 1s

being processed:

comparing the first address to the second address; and

foregoing processing of instructions following the pre-
determined instruction and processing instrumenta-
tion code, 1n response to determining the first address
matches the second address.

11. The method as recited in claim 10, wherein 1n further
response to determining the predetermined instruction 1s
being processed and the first address does not match the
second address, the method further comprises processing an
instruction following the predetermined 1nstruction 1n pro-
gram order without processing the instrumentation code.

12. The method as recited 1n claim 10, further comprising
updating the second address with a new address that i1den-
tifies a new location of the plurality of locations.

13. The method as recited in claim 10, wherein foregoing
processing of instructions following the predetermined
instruction and processing the instrumentation code further
comprises

transferring control flow from the computer program to

the mnstrumentation code.

14. The method as recited in claim 10, wherein 1n
response to detecting execution of the instrumentation code
has completed, the method further comprises:

updating the second address with a new address that

identifies a random location of the plurality of loca-
tions; and

transierring control flow from the instrumentation code to

instructions following the predetermined instruction 1n
the computer program.

15. The method as recited 1n claim 10, further comprising;:

initializing a watchpoint data register to store a threshold

data value; and

initializing a first data value stored 1n the given location

identified by the first address to store a random number
between zero and the threshold data value.

16. The method as recited 1n claim 13, further comprising;:

comparing the threshold data value to the first data value

responsive to determining the first address matches the
second address; and

foregoing processing of instructions following the prede-

termined instruction and process the instrumentation
code 1n further response to determining the first data
value matches the threshold data value.

US 9,483,379 B2

13

17. A non-transitory computer readable storage medium
storing program instructions, wherein the program instruc-
tions are executable to:

process instructions of a computer program stored in a

memory;

allocate 1n the memory a memory region comprising a

plurality of locations;

store a first address 1n a watchpoint address register,

wherein the first address identifies a given location of
the plurality of locations;

initialize a pointer with a second address that 1dentifies a

random location of the plurality of locations; and

responsive to determining a predetermined instruction 1s

being processed:

compare the first address to the second address; and

forego processing of instructions following the prede-
termined instruction and process instrumentation
code, 1n response to determining the first address
matches the second address.

18. The non-transitory computer readable storage medium
as recited i claim 17, wherein 1n further response to
determining the predetermined instruction 1s being pro-
cessed and the first address does not match the second

5

10

15

20

14

address, the program instructions are further executable to
process an 1nstruction following the predetermined instruc-
tion in program order without processing the instrumenta-
tion code.

19. The non-transitory computer readable storage medium
as recited in claim 18, wherein the program instructions are
further executable to:

imitialize a watchpoint data register to store a threshold

data value; and

imitialize a first data value stored in the given location

identified by the first address to store a random number
between zero and the threshold data value.

20. The non-transitory computer readable storage medium
as recited 1n claim 19, wherein the program instructions are
further executable to:

compare the threshold data value to the first data value

responsive to determining the first address matches the
second address; and

forego processing of instructions following the predeter-

mined instruction and process the istrumentation code
in further response to determining the first data value
matches the threshold data value.

e e e e e

	Page 1 - Bibliography/Abstract
	Page 2 - Bibliography
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Description
	Page 8 - Description
	Page 9 - Description
	Page 10 - Description
	Page 11 - Description
	Page 12 - Description/Claims
	Page 13 - Claims

