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A method for hardware management of DMA transfer
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DMA transfer command and determining a first portion of a
data transfer requested by the DMA transfer command.
Transfer of a first portion of the data transfer by the first
DMA engine is initiated based at least in part on the DMA
transfer command. Similarly, a second portion of the data
transfer by a second DMA engine is initiated based at least
in part on the DMA transfer command. After transferring the
first portion and the second portion of the data transfer, an
indication is generated that signals completion of the data
transfer requested by the DMA transfer command.
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1
DMA ENGINES CONFIGURED TO
PERFORM FIRST PORTION DATA
TRANSFER COMMANDS WITH A FIRST
DMA ENGINE AND SECOND PORTION
DATA TRANSFER COMMANDS WITH
SECOND DMA ENGINE

BACKGROUND

A system direct memory access (DMA) engine is a
module which coordinates direct memory access transfers of
data between devices (e.g., input/output interfaces and dis-
play controllers) and memory, or between different locations
in memory, within a computer system. A DMA engine is
often located on a processor, such as a central processing
unit (CPU) or a graphics processor (GPU) and receives
commands from an application running on the processor.
Based on the commands, the DMA engine reads data from
a DMA source (e.g., a first memory buffer defined in
memory) and writes data to a DMA destination (e.g., a
second buffer defined in memory).

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure may be better understood, and its
numerous features and advantages made apparent to those
skilled in the art by referencing the accompanying drawings.
The use of the same reference symbols in different drawings
indicates similar or identical items.

FIG. 1 illustrates a block diagram of a computing system
implementing a multi-die processor in accordance with
some embodiments.

FIG. 2 is a block diagram of portions of an example
computing system for implementing hardware management
of DMA commands in accordance with some embodiments.

FIG. 3 is a block diagram illustrating portions of an
example multi-processor computing system for implement-
ing hardware management of DMA commands in accor-
dance with some embodiments.

FIG. 4 is a block diagram illustrating an example of a
system implementing hardware-managed splitting of trans-
fer commands based on cache status in accordance with
some embodiments.

FIG. 5 is a block diagram illustrating another example of
a system implementing hardware-managed splitting of
transfer commands in accordance with some embodiments.

FIG. 6 is a flow diagram illustrating a method of per-
forming hardware-managed splitting of DMA transfer com-
mands in accordance with some embodiments.

DETAILED DESCRIPTION

Conventional processors include one or more direct
memory access engines to read and write blocks of data
stored in a system memory. The direct memory access
engines relieve processor cores from the burden of manag-
ing transfers. In response to data transfer requests from the
processor cores, the direct memory access engines provide
requisite control information to the corresponding source
and destination such that data transfer operations can be
executed without delaying computation code, thus allowing
communication and computation to overlap in time. With
the direct memory access engine asynchronously handling
the formation and communication of control information,
processor cores are freed to perform other tasks while
awaiting satisfaction of the data transfer requests.
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2

Distributed architectures are increasingly common alter-
natives to monolithic processing architecture in which
physically or logically separated processing units are oper-
ated in a coordinated fashion via a high-performance inter-
connection. One example of such a distributed architecture
is a chiplet architecture, which captures the advantages of
fabricating some portions of a processing unit at smaller
nodes while allowing other portions to be fabricated at nodes
having larger dimensions if the other portions do not benefit
from the reduced scales of the smaller nodes. The number of
direct memory access engines will likely increase in chiplet-
based systems (such as relative to an equivalent monolithic,
non-chiplet based design).

To increase system performance by improving utilization
of direct memory access engines, FIGS. 1-6 illustrate sys-
tems and methods that utilize hardware-managed coordina-
tion for the processing of direct memory transfer commands.
In various embodiments, a method for hardware manage-
ment of DMA transfer commands includes accessing, by a
first DMA engine, a DMA transfer command and determin-
ing a first portion of a data transfer requested by the DMA
transfer command. Transfer of a first portion of the data
transfer by the first DMA engine is initiated based at least in
part on the DMA transfer command. Similarly, a second
portion of the data transfer by a second DMA engine (that is,
a different DMA engine than the first DMA engine) is
initiated based at least in part on the DMA transfer com-
mand. After transferring the first portion and the second
portion of the data transfer, an indication is generated that
signals completion of the data transfer requested by the
DMA transfer command. In this manner, the work specified
by a transfer command is split across DMA engines such that
total bandwidth usage goes up without each individual DMA
engine needing to get bigger or have more capabilities to
increase overall DMA throughput and data fabric bandwidth
usage.

FIG. 1 illustrates a block diagram of one embodiment of
a computing system 100 implementing a multi-die processor
in accordance with some embodiments. In various embodi-
ments, computing system 100 includes at least one or more
processors 102A-N;, fabric 104, input/output (I/O) interfaces
106, memory controller(s) 108, display controller 110, and
other device(s) 112. In various embodiments, to support
execution of instructions for graphics and other types of
workloads, the computing system 100 also includes a host
processor 114, such as a central processing unit (CPU). In
various embodiments, computing system 100 includes a
computer, laptop, mobile device, server, or any of various
other types of computing systems or devices. It is noted that
the number of components of computing system 100 vary in
some embodiments. It is also noted that in some embodi-
ments computing system 100 includes other components not
shown in FIG. 1. Additionally, in other embodiments, com-
puting system 100 is structured in other ways than shown in
FIG. 1.

Fabric 104 is representative of any communication inter-
connect that complies with any of various types of protocols
utilized for communicating among the components of the
computing system 100. Fabric 104 provides the data paths,
switches, routers, and other logic that connect the processing
units 102, 1/O interfaces 106, memory controller(s) 108,
display controller 110, and other device(s) 112 to each other.
Fabric 104 handles the request, response, and data traffic, as
well as probe traffic to facilitate coherency. Fabric 104 also
handles interrupt request routing and configuration access
paths to the various components of computing system 100.
Additionally, fabric 104 handles configuration requests,
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responses, and configuration data traffic. In some embodi-
ments, fabric 104 is bus-based, including shared bus con-
figurations, crossbar configurations, and hierarchical buses
with bridges. In other embodiments, fabric 104 is packet-
based, and hierarchical with bridges, crossbar, point-to-
point, or other interconnects. From the point of view of
fabric 104, the other components of computing system 100
are referred to as “clients”. Fabric 104 is configured to
process requests generated by various clients and pass the
requests on to other clients.

Memory controller(s) 108 are representative of any num-
ber and type of memory controllers coupled to any number
and type of memory device(s). For example, the type of
memory device(s) coupled to memory controller(s) 108
include Dynamic Random Access Memory (DRAM), Static
Random Access Memory (SRAM), NAND Flash memory,
NOR flash memory, Ferroelectric Random Access Memory
(FeRAM), or others. Memory controller(s) 108 are acces-
sible by processors 102, I/O interfaces 106, display control-
ler 110, and other device(s) 112 via fabric 104. I/O interfaces
106 are representative of any number and type of 1/O
interfaces (e.g., peripheral component interconnect (PCI)
bus, PCI-Extended (PCI-X), PCIE (PCI Express) bus, giga-
bit Ethernet (GBE) bus, universal serial bus (USB)). Various
types of peripheral devices are coupled to I/O interfaces 106.
Such peripheral devices include (but are not limited to)
displays, keyboards, mice, printers, scanners, joysticks or
other types of game controllers, media recording devices,
external storage devices, network interface cards, and so
forth. Other device(s) 112 are representative of any number
and type of devices (e.g., multimedia device, video codec).

In various embodiments, each of the processors 102 is a
parallel processor (e.g., vector processors, graphics process-
ing units (GPUs), general-purpose GPUs (GPGPUs), non-
scalar processors, highly-parallel processors, artificial intel-
ligence (AI) processors, inference engines, machine learning
processors, other multithreaded processing units, and the
like). Each parallel processor 102 is constructed as a multi-
chip module (e.g., a semiconductor die package) including
two or more base integrated circuit dies (described in more
detail below with respect to FIG. 2) communicably coupled
together with bridge chip(s) such that a parallel processor is
usable (e.g., addressable) like a single semiconductor inte-
grated circuit. As used in this disclosure, the terms “die” and
“chip” are interchangeably used. Those skilled in the art will
recognize that a conventional (e.g., not multi-chip) semi-
conductor integrated circuit is manufactured as a wafer or as
a die (e.g., single-chip IC) formed in a wafer and later
separated from the wafer (e.g., when the wafer is diced);
multiple ICs are often manufactured in a wafer simultane-
ously. The ICs and possibly discrete circuits and possibly
other components (such as non-semiconductor packaging
substrates including printed circuit boards, interposers, and
possibly others) are assembled in a multi-die parallel pro-
Cessor.

As described in more detail with respect to FIGS. 2-6
below, in various embodiments, each of the individual
processors 102 include one or more base IC dies employing
processing stacked die chiplets in accordance with some
embodiments. The base dies are formed as a single semi-
conductor chip package including N number of communi-
cably coupled graphics processing stacked die chiplets. In
various embodiments, the base IC dies include two or more
DMA engines that coordinate DMA transfers of data
between devices and memory (or between different locations
in memory). It should be recognized that although various
embodiments are described below in the particular context
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of CPUs and GPUs for ease of illustration and description,
the concepts described here is also similarly applicable to
other processors including accelerated processing units
(APUs), discrete GPUs (dGPUs), artificial intelligence (Al)
accelerators, other parallel processors, and the like.

Referring now to FIG. 2, illustrated is a block diagram of
portions of an example computing system 200. In some
examples, computing system 200 is implemented using
some or all of device 100, as shown and described with
respect to FIG. 1. Computing system 200 includes at least a
first semiconductor die 202. In various embodiments, semi-
conductor die 202 includes one or more processors 204A-N,
input/output (I/0) interfaces 206, intra-die interconnect 208,
memory controller(s) 210, and network interface 212. In
other examples, computing system 200 includes further
components, different components, and/or is arranged in a
different manner. In some embodiments, the semiconductor
die 202 is a multi-chip module constructed as a semicon-
ductor die package including two or more integrated circuit
(IC) dies, such that a processor may be used like a single
semiconductor integrated circuit. As used in this disclosure,
the terms “die” and “chip” may be interchangeably used.

In some embodiments, each of the processors 204A-N
includes one or more processing devices. In one embodi-
ment, at least one of processors 204A-N includes one or
more general purpose processing devices, such as CPUs. In
some implementations, such processing devices are imple-
mented using processor 102 as shown and described with
respect to FIG. 1. In another embodiment, at least one of
processors 204A-N includes one or more parallel proces-
sors. Examples of parallel processors include GPUs, digital
signal processors (DSPs), field programmable gate arrays
(FPGAs), application specific integrated circuits (ASICs),
and the.

The 1O interfaces 206 include one or more I/O interfaces
(e.g., peripheral component interconnect (PCI) bus, PCI-
Extended (PCI-X), PCIE (PCI Express) bus, gigabit Ether-
net (GBE) bus, universal serial bus (USB), and the like). In
some implementations, I/O interfaces 206 are implemented
using input driver 112, and/or output driver 114 as shown
and described with respect to FIG. 1. Various types of
peripheral devices can be coupled to I/O interfaces 206.
Such peripheral devices include (but are not limited to)
displays, keyboards, mice, printers, scanners, joysticks or
other types of game controllers, media recording devices,
external storage devices, network interface cards, and so
forth. In some implementations, such peripheral devices are
implemented using input devices 108 and/or output devices
118 as shown and described with respect to FIG. 1.

In various embodiments, each processor includes a cache
subsystem with one or more levels of caches. In some
embodiments, each of the processors 204A-N includes a
cache (e.g., level three (L.3) cache) which is shared among
multiple processor cores of a core complex. The memory
controller 210 includes at least one memory controller
accessible by processors 204A-N, such as accessible via
intra-die interconnect 208. In various embodiments,
memory controller 210 includes one or more of any suitable
type of memory controller. Each of the memory controllers
are coupled to (or otherwise in communication with) and
control access to any number and type of memory devices
(not shown). In some implementations, such memory
devices include dynamic random access memory (DRAM),
static random access memory (SRAM), NAND Flash
memory, NOR flash memory, ferroelectric random access
memory (FeRAM), or any other suitable memory device.
The intra-die interconnect 208 includes any computer com-
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munications medium suitable for communication among the
devices shown in FIG. 2, such as a bus, data fabric, or the
like.

FIG. 3 is a block diagram illustrating portions of an
example multi-processor computing system 300. System
300, or portions thereof, is implementable using some or all
of semiconductor die 202 (as shown and described with
respect to FIG. 2) and/or device 100 (as shown and
described with respect to FIGS. 1 and 2). In various embodi-
ments, the system 300 includes a processor multi-chip
module 302 employing processing stacked die chiplets in
accordance with some embodiments. The processor multi-
chip module 302 is formed as a single semiconductor chip
package including N=3 number of communicably coupled
graphics processing stacked die chiplets 304. As shown, the
processor multi-chip module 302 includes a first graphics
processing stacked die chiplet 304A, a second graphics
processing stacked die chiplet 304B, and a third graphics
processing stacked die chiplet 304C.

It should be recognized that although the graphics pro-
cessing stacked die chiplets 304 are described below in the
particular context of GPU terminology for ease of illustra-
tion and description, in various embodiments, the architec-
ture described is applicable to any of a variety of types of
parallel processors (such as previously described more
broadly with reference to FIGS. 2 and 3) without departing
from the scope of this disclosure. Additionally, in various
embodiments, and as used herein, the term “chiplet” refers
to any device including, but is not limited to, the following
characteristics: 1) a chiplet includes an active silicon die
containing at least a portion of the computational logic used
to solve a full problem (i.e., the computational workload is
distributed across multiples of these active silicon dies); 2)
chiplets are packaged together as a monolithic unit on the
same substrate; and 3) the programming model preserves the
concept that the combination of these separate computa-
tional dies (i.e., the graphics processing stacked die chiplet)
as a single monolithic unit (i.e., each chiplet is not exposed
as a separate device to an application that uses the chiplets
for processing computational workloads).

In various embodiments, the processor multi-chip module
302 includes an inter-chip data fabric 306 that operates as a
high-bandwidth die-to-die interconnect between chiplets
(e.g., between any combination of the first graphics process-
ing stacked die chiplet 304 A, the second graphics processing
stacked die chiplet 304B, and the third graphics processing
stacked die chiplet 304C). In some embodiments, the pro-
cessor multi-chip module 302 include one or more processor
cores 308 (e.g., CPUs and/or GPUs, or processor core dies)
formed over each of the chiplets 304A-304C. Additionally,
in various embodiments, each of the chiplets 304A-304C
includes one or more levels of cache memory 310 and one
or more memory PHY's (not shown) for communicating with
external system memory modules 312, such as dynamic
random access memory (DRAM) modules.

Each of the chiplets 304A-304C also includes one or more
DMA engines 314. In various embodiments, the one or more
DMA engines 314 coordinate DMA transfers of data
between devices and memory (or between different locations
in memory) within system 300. The one or more DMA
engines 314 coordinate, in various embodiments, moving of
data between the multiple devices/accelerators while com-
putation(s) are performed on other data at, for example, the
processor cores 308. In various embodiments, the one or
more DMA engines 314 are, in some embodiments, part of
a DMA controller (not shown) but the terms DMA engine
and DMA controller are used interchangeably herein. The
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DMA engines 314, in response to commands, operates to
transfer data into and out of, for example, the one or more
memory modules 312 without involvement of the processor
cores 308. Similarly, the DMA engines 314, in some
embodiments, performs intra-chip data transfers. As will be
appreciated, the DMA engines 314 relieve processor cores
from the burden of managing data transfers, and in various
embodiments is used as a global data transfer agent to handle
various data transfer requirements from software, such as
memory-to-memory data copying.

The one or more DMA engines 314 provide for fetching
and decoding of command packets from application/agent
queues and respective DMA buffers to perform the desired
data transfer operations as specified by DMA commands,
also known as descriptors. DMA commands include
memory flow commands that transfer or control the transfer
of memory locations containing data or instructions (e.g.,
read/get or write/put commands for transferring data in or
out of memory). The DMA command descriptors indicate, in
various embodiments, a source address from which to read
the data, a transfer size, and a destination address to which
the data are to be written for each data transfer operation.
The descriptors are commonly organized in memory as a
linked list, or chain, in which each descriptor contains a field
indicating the address in the memory of the next descriptor
to be executed. In various embodiments, the descriptors are
also an array of commands with valid bits, where the
command is of a known size and the one or more DMA
engines 314 stop when it reaches an invalidate command.
The last descriptor in the list has a null pointer in the “next
descriptor” field, indicating to the DMA engine that there are
no more commands to be executed, and DMA should
become idle once it has reached the end of the chain.

In response to data transfer requests from the processor
cores, the DMA engines 314 provide the requisite control
information to the corresponding source and destination so
that the data transfer requests are satisfied. Because the
DMA engines 314 handle the formation and communication
of the control information, processor cores are freed to
perform other tasks while awaiting satisfaction of the data
transfer requests. In various embodiments, each of the DMA
engines 314 include one or more specialized auxiliary
processor(s) that transfer data between locations in memory
and/or peripheral input/output (I/O) devices and memory
without intervention of processor core(s) or CPUs.

In some embodiments, demand for DMA is handled by
placing DMA commands generated by one or more of the
processors 308 in memory mapped 10 (MMIO) locations
such as at DMA buffer(s) 316 (also interchangeably referred
to as DMA queues for holding DMA transfer commands). In
various embodiments, the DMA buffer is a hardware struc-
ture into which read or write instructions are transferred
such that the DMA engines 314 can read DMA commands
out of (e.g., rather than needing to go to DRAM memory).
To perform data transfer operations, in various embodi-
ments, the DMA engines 314 receive instructions (e.g.,
DMA transfer commands/data transfer requests) generated
by the processors 308 by accessing a sequence of commands
in the DMA buffer(s) 316. The DMA engines 314 then
retrieves the DMA commands (also known as descriptors)
from the DMA buffer(s) 316 for processing. In some
embodiments, the DMA commands specity, for example, a
start address for direct virtual memory access (DVMA) and
/O bus accesses, and a transfer length up to a given
maximum.

Although the DMA buffer(s) 316 are illustrated in FIG. 3
as being implemented at the chiplets 304 for ease of illus-
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tration, those skilled in the art will recognize that the DMA
buffer(s) 316 are implementable at various components of
the systems and devices described herein without departing
from the scope of this disclosure. For example, in some
embodiments, the DMA buffer(s) 316 are configured in main
memory such as at memory modules 312. That location of
the command queue in memory is where DMA engines 314
go to read transfer commands. In various embodiments, the
DMA buffer(s) 316 are further configured as one or more
ring buffers (e.g., addressed by modulo-addressing).

The DMA engines 314 accesses DMA transfer commands
(or otherwise receives commands) from the DMA buffer(s)
316 over a bus (not shown). Based on the received instruc-
tions, in some embodiments, the DMA engines 314 read and
buffer data from any memory (e.g., memory modules 312)
via the data fabric 306, and write the buffered data to any
memory via the data fabric 306. In some implementations,
a DMA source and DMA destination are physically located
on different devices (e.g., different chiplets). Similarly, in
multi-processor systems, the DMA source and DMA desti-
nation are located on different devices associated with
different processors in some cases. In such cases, the DMA
engine 314 resolves virtual addresses to obtain physical
addresses, and issues remote read and/or write commands to
affect the DMA transfer. For example, in various embodi-
ments, based on the received instructions, DMA engines 314
send a message to a data fabric device with instructions to
affect a DMA transfer.

During DMA, the one or more processor cores 308 queue
DMA commands in the DMA buffer(s) 316 and can signal
their presence to the DMA engines 314. For example, in
some embodiments, an application program running on the
system 300 prepares an appropriate chain of descriptors in
memory accessible to the DMA engine (e.g., DMA buffers
316) to initiate a chain of DMA data transfers. The processor
cores 308 then sends a message (or other notification) to the
DMA engine 314 indicating the memory address of the first
descriptor in the chain, which is a request to the DMA engine
to start execution of the descriptors. The application typi-
cally sends the message to the “doorbell” of the DMA
engine—a control register with a certain bus address that is
specified for this purpose. Sending such a message to initiate
DMA execution is known as “ringing the doorbell” of the
DMA engine 314. The DMA engine 314 responds by
reading and executing the first descriptor. It then updates a
status field of the descriptor to indicate to the application that
the descriptor has been executed. The DMA engine 314
follows the “next” field through the entire linked list, mark-
ing each descriptor as executed, until it reaches the null
pointer in the last descriptor. After executing the last descrip-
tor, the DMA engine 314 becomes idle and is ready to
receive a new list for execution.

In various embodiments, such as illustrated in FIG. 3, the
system 300 includes two or more accelerators connected
together by the inter-chip data fabric 306. Further, as illus-
trated in FIG. 3, the components of the graphics processing
stacked die chiplets 304 (e.g., the one or more processor
cores 308, DMA engines 314, DMA buffers 316, and the
like) are in communication with each other over intercon-
nect 318 (e.g., via other components). In this manner, the
interconnect 318 forms part of a data fabric which facilitates
communication among components of multi-processor com-
puting system 300. Further, the inter-chip data fabric 306
extends the data fabric over the various communicably
coupled graphics processing stacked die chiplets 304 and
1/0 interfaces (not shown) which also form part of the data
fabric. In wvarious embodiments, the interconnect 318
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includes any computer communications medium suitable for
communication among the devices shown in FIG. 3, such as
a bus, data fabric, and the like. In some implementations, the
interconnect 318 is connected to and/or in communication
with other components, which are not shown in FIG. 3 for
ease of description. For example, in some implementations,
interconnect 318 includes connections to one or more input/
output (I/O) interfaces 206 such as shown and described
with respect to FIG. 2.

As will be appreciated, the inter-chip data fabric 306
and/or the interconnects 318 often have such a high band-
width that a single DMA engine is not capable of saturating
available data fabric bandwidth. In various embodiments,
and as described in more detail below, the system 300
utilizes the increased number of DMA engines 314 (e.g., one
per chiplet 304 as illustrated in the embodiment of FIG. 3)
to perform hardware-managed (i.e., mediated by device
hardware without input by system software applications
including, for example, one or both of an operating system
or a hypervisor) splitting of transfer commands to multiple
DMA engines 314 for processing of memory transfer com-
mands via DMA. In this manner, the work specified by a
transfer command is essentially split across multiple chiplets
304 and their respective DMA engines 314 such that total
bandwidth usage goes up without each individual DMA
engine 314 needing to get bigger or have more capabilities
to increase overall DMA throughput and data fabric band-
width usage.

During operation, in response to notifications (e.g., door-
bell rings), the DMA engine 314 reads and executes the
DMA transfer commands (with its associated parameters)
from the DMA buffers 316 to execute data transfer opera-
tions and packet transfers. In various embodiments, the
operation parameters (e.g., DMA command parameters) are
usually the base address, the stride, the element size and the
number of elements to communicate, for both the sender and
the receiver sides. In particular, the DMA engines 314 are
configured such that multiple DMA engines 314 across
multiple dies (e.g., MCMs 302) or chiplets 304 read that
same location containing the packet with DMA transfer
parameters. Subsequently, as described in more detail below,
the DMA engines 314 synchronize and coordinate with each
other via hardware mechanisms to cooperatively work on
the DMA transfer. In various embodiments, the DMA
engines 314 conduct hardware-managed splitting of a com-
mand transfer such that a singular DMA engine only per-
forms part of the DMA transfer. For example, splitting of the
DMA transfer between two DMA engines 314 has the
potential to double bandwidth usage or DMA transfer
throughput per unit time, as each individual DMA engine is
performing half the transfer at the same time as the other
DMA engine.

Referring now to FIG. 4, illustrated is a block diagram
illustrating an example of a system implementing hardware-
managed splitting of transfer commands based on cache
status in accordance with some embodiments. Device 400,
or portions thereof, is implementable using some or all of
semiconductor die 202 (as shown and described with respect
to FIG. 2) and/or device 100 (as shown and described with
respect to FIGS. 1 and 2). In various embodiments, the
device 400 includes a base die 402 employing processing
stacked die chiplets in accordance with some embodiments.
The base die 402 is formed as a single semiconductor chip
package including N=2 number of communicably coupled
graphics processing stacked die chiplets 404. As shown, the
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processor base die 402 includes a first graphics processing
stacked die chiplet 404A and a second graphics processing
stacked die chiplet 404B.

In various embodiments, the base die 402 includes an
inter-chip data fabric 406 that operates as a high-bandwidth
die-to-die interconnect between chiplets (e.g., between the
first graphics processing stacked die chiplet 404A and the
second graphics processing stacked die chiplet 404B). In
some embodiments, the base die 402 include one or more
processor cores 408 (e.g., CPUs and/or GPUs, or processor
core dies) formed over each of the chiplets 404A-404B.
Additionally, in various embodiments, each of the chiplets
404A-404B includes one or more levels of cache memory
410 and one or more memory PHYs (not shown) for
communicating with external system memory modules 412,
such as dynamic random access memory (DRAM) modules.
When considered as a whole, the main memory (e.g.,
memory modules 412) communicably coupled to the mul-
tiple chiplets (e.g., chiplets 404A and 404B) and their local
caches form the shared memory for the device 400. As will
be appreciated, each chiplet 404 only has a direct physical
connection to a portion of the whole share memory system.

In various embodiments, the base die 402 includes two or
more DMA engines 414 (e.g., a first DMA engine 414 A and
a second DMA engine 414B) positioned on top of the base
die 402. In various embodiments, the DMA engines 414
coordinate DMA transfers of data between devices and
memory (or between different locations in memory) within
system 400. The DMA engines 414 coordinate, in various
embodiments, moving of data between the multiple devices/
accelerators while computation(s) are performed on other
data at, for example, the processor cores 408. In various
embodiments, the one or more DMA engines 414 are, in
some embodiments, part of a DMA controller (not shown)
but the terms DMA engine and DMA controller are used
interchangeably herein. The DMA engines 414, in response
to commands, operates to transfer data into and out of, for
example, the one or more memory modules 412 without
involvement of the processor cores 408. Similarly, the DMA
engines 414, in some embodiments, performs intra-chip data
transfers.

It should be recognized that although the graphics pro-
cessing stacked die chiplets 304 are described below in the
particular context of GPU terminology for ease of illustra-
tion and description, in various embodiments, the architec-
ture described is applicable to any of a variety of types of
parallel processors (such as previously described more
broadly with reference to FIGS. 2 and 3) without departing
from the scope of this disclosure. Further, although the
DMA engines 414 are illustrated as sitting on top of each
individual compute chiplet in FIG. 4, those skilled in the art
will recognize that the hardware-managed splitting of trans-
fer commands may be performed by DMA engines at
various system locations without departing from the scope
of this disclosure. For example, in some embodiments, the
DMA engines sit on top of the base die (such as described
with respect to FIG. 5). Similarly, although the systems and
devices are described here in the context of chiplet-based
systems, those skilled in the art will recognize that the
hardware-managed splitting of transfer commands is not
limited to that particular architecture may be performed in
any system configuration including multiple DMA engines,
including monolithic dies.

In some embodiments, demand for DMA is handled by
placing DMA commands (also interchangeably referred to
as packets) generated by one or more of the processors 408
in memory mapped 10 (MMIO) locations such as at DMA
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buffer 416 (also interchangeably referred to as DMA queues
for holding DMA transfer commands). In various embodi-
ments, the DMA buffer 416 is a hardware structure into
which read or write instructions are transferred such that the
DMA engines 414 can read DMA commands out of (e.g.,
rather than needing to go to DRAM memory). To perform
data transfer operations, in various embodiments, the DMA
engines 414 receive instructions (e.g., DMA transfer com-
mands/data transfer requests) generated by the processors
408 by accessing a sequence of commands in the DMA
buffer 416. The DMA engines 414 then retrieve the DMA
commands (also known as descriptors) from the DMA buffer
416 for processing. In some embodiments, the DMA com-
mands specify, for example, a start address for direct virtual
memory access (DVMA) and I/O bus accesses, and a
transfer length up to a given maximum.

Although the DMA buffer 416 is illustrated in FIG. 4 as
being implemented at the base die 402 for ease of illustra-
tion, those skilled in the art will recognize that the DMA
buffer 416 is implementable at various components of the
systems and devices described herein without departing
from the scope of this disclosure. For example, in some
embodiments, the DMA buffer 416 are configured in main
memory such as at memory modules 412. That location of
the command queue in memory is where DMA engines 414
go to read transfer commands. In various embodiments, the
DMA buffer 416 is further configured as one or more ring
buffers (e.g., addressed by modulo-addressing).

As illustrated in FIG. 4, the DMA engines 414A and 414B
receive a DMA notification 418 indicating that one or more
DMA workloads or DMA jobs have been formed and filled
in memory (such as the DMA buffer 416 or at a system
memory module 412). In various embodiments, such as
previously described, the DMA notification 418 includes a
doorbell ring or other notifier that indicates DMA descrip-
tors have been prepared in memory. In response to receiving
the DM A notification 418, the DM A engines 414A and 414B
each independently fetch a DMA job description 420 from
the DMA buffer 416. In some embodiments, the communi-
cation path for the DMA engines 414 to retrieve DMA
transfer commands includes a PCIE interface (e.g., I/O
interfaces 106 such as previously discussed with respect to
FIG. 1) as a path for processor to chiplet 404 connection. In
other embodiments, the communication path for the DMA
engines 414 to retrieve DMA transfer commands includes an
internal data fabric (e.g., interconnect 318 such as previously
discussed with respect to FIG. 3) as a path for on-die
processor to DMA engine 414 connection.

In addition to independently fetching the same DMA job
description from the same location (i.e., DMA buffer 416),
each of the DMA engines 414A and 414B also indepen-
dently determine a portion of data transfer requested by the
DMA transfer command to perform. In one embodiment,
DMA engines 414A and 414B each issue speculative DMA
transfers by broadcasting a cache probe request 422 (e.g., a
read and/or a write probe) to the cache memory 410 and
main memory (e.g., memory module 412) of their respective
chiplets 404. In response to the cache probe requests, the
cache memory 410 and main memory of each chiplet 404
will return one or more return responses to the requesting
DMA engine. For example, for a DMA read probe, the cache
memories 410 can return a cache hit or a cache miss to
indicate whether the requested data is found within cache
memory 410.

As illustrated in FIG. 4, the retrieved DMA job descrip-
tion 420 is a single transfer command to read data from
physical addresses X and Y. To determine whether some of



US 11,995,351 B2

11

the data associated with addresses X and Y is currently
residing in cache memory 410 (e.g., L3 or some last level
cache) of the first graphics processing stacked die chiplet
404A, the DMA engine 414A broadcasts a cache probe
request 422 to the cache memory 410 (including cache
controllers [not shown]) before memory modules 412 and
receives one or more return responses indicating a cache hit
for address X and a cache miss for address Y. To determine
whether some of the data associated with addresses X and Y
is currently residing in cache memory 410 of the second
graphics processing stacked die chiplet 404B, the DMA
engine 414B similarly broadcasts the cache probe request
422 to the cache memory 410 and receives one or more
return responses indicating a cache miss for address X and
a cache miss for address Y.

In various embodiments, probes include messages passed
from a coherency point (e.g., at the DMA engine 414) to one
or more caches in the computer system to request a response
indicating whether the caches have a copy of a block of data
and, in some implementations, to indicate a cache state into
which the cache should place the block of data. In some
implementations, if a DMA engine 414 receives a memory
request targeting its corresponding memory controller (e.g.,
a memory request for data stored at an address or a region
of addresses in a memory controlled by the memory con-
troller), the DMA engine 414 performs a lookup (e.g., a
tag-based lookup) to its corresponding cache directory to
determine whether the request targets a memory address or
region cached in at least one cache line of any of the cache
subsystems.

Additionally, a particular physical address will only exist
at one location of the memory modules 412. For example, in
chiplet-based systems, each die is assigned or otherwise
physical connected to a memory channel having a particular
range of addresses (or certain address patterns belong to
local vs. remote dies). From virtual to physical address
translations, each DMA engine 414 is aware of whether the
addresses of a DMA transfer command is within the range
of memory that is connected to that physical die. If a DMA
engine 414 decodes the DMA transfer command and deter-
mines that the data is not in local memory, the DM A engine
414 will skip those portions of the DMA job. Additionally,
if all DMA engines 414 operate in this same manner, then
the entire memory channel will be covered.

In the example embodiment of FIG. 4, data for physical
address X and physical address Y are stored at the memory
module 412 directly connected to the second graphics pro-
cessing stacked die chiplet 404B. However, as the cache
memory 410 of the first graphics processing stacked die
chiplet 404 A already contains the requested data for physical
address X, the DMA engine 414A performs the portion of
data transfer associated with address X (as opposed to
retrieving the data from the cache of a different chiplet).
Accordingly, having the DMA engine 414A perform the
DMA transfer of data associated with address X is more
energy optimal and lower latency than crossing over the
inter-chip data fabric 406 to access the data-owning memory
module 412 (or cache) of a different chiplet.

Similarly, due to the cache probe request 422 resulting in
a cache miss at both cache memories 410 of the first and
second chiplets 404, the DMA engine 414B of the data-
owning cache memory 410 performs DMA transfer of data
associated with physical address Y. In other words, the DMA
engine 414 that is closer to the data is the engine that
performs the DMA transfer. Subsequently, the DMA engines
414 signal that the DMA transfer is completed, such as by
sending an interrupt signal to the processor cores 408. In this
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manner, the hardware-managed coordination of splitting a
whole DMA transfer packet and performance of the DMA
transfer (each DMA engine performing its transfer in par-
allel with other DMA engines) by the closer DMA engine
414 prevents the DMA transfer operation from needing to
read the data from memory across all different channels
(e.g., reading data from the cache memory or DRAM
associated with a different chiplet requires traffic crossing
the interconnect and taking an energy performance hit).

Once all DMA engines 414 have completed their portion
of the DMA job, a signal is returned to the requesting
processor to indicate that the DMA job is complete. For
example, in some embodiments, this is accomplished by
writing a value indicating completion to the DMA buffer,
writing a value to some other location in memory, through
an interrupt to the requesting processor, and the like.
Because the requesting processor is only be notified when
the entire DMA job has completed, the DMA engines 414
synchronize in some fashion such that the DMA job comple-
tion is only indicated when all DMA engines 414 are done
with their portion of the DMA job. In some embodiments,
this is accomplished through a variety of techniques, such as
atomically incrementing a counter in the DMA buffer to
indicate how many DMA engines have completed their
portion, through a synchronization structure in memory, or
through direct messaging between the DMA engines over
the fabric 406.

In other embodiments, such as described in more detail
below, the DMA engines determine the splitting of packets
of transfer commands based on an amount of data transfer
and interleaving the workload amongst multiple DMA
engines (instead of looking at the physical addresses to be
accessed such as described in FIG. 4).

Referring now to FIG. 5, illustrated is a block diagram
illustrating another example of a system implementing hard-
ware-managed splitting of transfer commands in accordance
with some embodiments. Device 500, or portions thereof, is
implementable using some or all of semiconductor die 202
(as shown and described with respect to FIG. 2) and/or
device 100 (as shown and described with respect to FIGS. 1
and 2). In various embodiments, the device 500 includes a
base die 502 employing processing stacked die chiplets in
accordance with some embodiments. The base die 502 is
formed as a single semiconductor chip package including
N=2 number of communicably coupled graphics processing
stacked die chiplets 504. As shown, the processor base die
502 includes a first graphics processing stacked die chiplet
504 A and a second graphics processing stacked die chiplet
504B.

In various embodiments, the base die 502 includes an
inter-chip data fabric 506 that operates as a high-bandwidth
die-to-die interconnect between chiplets (e.g., between the
first graphics processing stacked die chiplet 504A and the
second graphics processing stacked die chiplet 504B). In
some embodiments, the base die 502 include one or more
processor cores 508 (e.g., CPUs and/or GPUs, or processor
core dies) formed over each of the chiplets 504A-504B.
Additionally, in various embodiments, each of the chiplets
504A-504B includes one or more levels of cache memory
510 and one or more memory PHYs (not shown) for
communicating with external system memory modules 512,
such as dynamic random access memory (DRAM) modules.
When considered as a whole, the main memory (e.g.,
memory modules 512) communicably coupled to the mul-
tiple chiplets (e.g., chiplets 504A and 504B) and their local
caches form the shared memory for the device 500. As will
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be appreciated, each chiplet 504 only has a direct physical
connection to a portion of the whole share memory system.

In various embodiments, the base die 502 includes two or
more DMA engines 514 (e.g., a first DMA engine 514A and
a second DMA engine 514B) positioned on top of the base
die 502. In various embodiments, the DMA engines 514
coordinate DMA transfers of data between devices and
memory (or between different locations in memory) within
system 500. The DMA engines 514 coordinate, in various
embodiments, moving of data between the multiple devices/
accelerators while computation(s) are performed on other
data at, for example, the processor cores 508.

In various embodiments, the one or more DMA engines
514 are, in some embodiments, part of a DMA controller
(not shown) but the terms DMA engine and DMA controller
are used interchangeably herein. The DMA engines 514, in
response to commands, operates to transfer data into and out
of, for example, the one or more memory modules 512
without involvement of the processor cores 508. Similarly,
the DMA engines 514, in some embodiments, performs
intra-chip data transfers. In some embodiments, the DMA
engines 514 include a front-end packet processor (not
shown) and a back-end command engine and transfer engine
(not shown). The transfer engine is the portion of the DMA
engine 514 that performs the actual DMA transfer/data
movement and the command engine drives the transfer
engine to tell it what actions to perform. In various embodi-
ments, a packet processor includes one or more processing
engines, such as advanced RISC machine (ARM), Micro-
processor without Interlocked Pipeline Stages (MIPS), serial
data processor (SDP), and/or other RISC cores enabled to
execute buffer management, table lookup, queue manage-
ment, fabric processing, and host processing functions
known to the art). The packet processor, in various embodi-
ments, is a microcontroller that waits on DMA packets to
arrive. After receiving and reading DMA packets, the packet
processor turns on the back end of the DMA controller to
perform data transfer.

In various embodiments, back-end command engine is a
microcontroller (or other firmware, state machine, and the
like) that other system components communicate with to
initiate DMA transfers. In some embodiments, the command
engine includes a single command engine that drives mul-
tiple transfer engines. In other embodiments, the command
engine includes a single command engine per transfer
engine. Additionally, the DMA engine 514 includes some
distributed algorithm that allows the command engines to
agree on what actions to perform. For example, if a single
DMA engine 514 includes two command engines, then each
command engine could be instructed by hardware that there
is a packet waiting in memory. After reading the packet, the
command engines synchronize with each other through a
sync mechanism, such as by a command engine bus or a
special location in memory that both command engines
know about to perform a software synchronization such as
a barrier or a lock. In various embodiments, both command
engines would read the packet. Subsequently, both com-
mand engines would read the command and communicate
with each other to split the data transfer. As will be appre-
ciated, the command engines synchronize with each other at
various instances, such as to tell the requesting processor
(e.g., CPU or processor cores 508) that the DMA transfer is
complete (after both command engines are done performing
their respective portions of the DMA transfer).

It should be recognized that although the graphics pro-
cessing stacked die chiplets 504 are described below in the
particular context of GPU terminology for ease of illustra-
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tion and description, in various embodiments, the architec-
ture described is applicable to any of a variety of types of
parallel processors (such as previously described more
broadly with reference to FIGS. 2 and 3) without departing
from the scope of this disclosure. Further, although the
DMA engines 514 are illustrated as sitting on top of the base
die 502 in FIG. 5, those skilled in the art will recognize that
the hardware-managed splitting of transfer commands may
be performed by DMA engines at various system locations
without departing from the scope of this disclosure. For
example, in some embodiments, the DMA engines sit on top
of each individual compute chiplet (such as previously
described in more detail with respect to FIG. 4). Similarly,
although the systems and devices are described here in the
context of chiplet-based systems, those skilled in the art will
recognize that the hardware-managed splitting of transfer
commands is not limited to that particular architecture may
be performed in any system configuration including multiple
DMA engines, including monolithic dies.

In some embodiments, demand for DMA is handled by
placing DMA commands (also interchangeably referred to
as packets) generated by one or more of the processors 508
in memory mapped 10 (MMIO) locations such as at DMA
buffer 516 (also interchangeably referred to as DMA queues
for holding DMA transfer commands). In various embodi-
ments, the DMA buffer is a hardware structure into which
read or write instructions are transferred such that the DMA
engines 514 can read DMA commands out of (e.g., rather
than needing to go to DRAM memory). To perform data
transfer operations, in various embodiments, the DMA
engines 514 receive instructions (e.g., DMA transfer com-
mands/data transfer requests generated by the processors
508). For example, in some embodiments, the DMA engines
514 retrieves DMA commands (also known as descriptors)
from the DMA buffer 516 for processing.

Although the DMA buffer 516 are illustrated in FIG. 5 as
being implemented at the base die 502 for ease of illustra-
tion, those skilled in the art will recognize that the DMA
buffer 516 is implementable at various components of the
systems and devices described herein without departing
from the scope of this disclosure. For example, in some
embodiments, the DMA buffer 516 is configured in main
memory such as at memory modules 512. That location of
the command queue in memory is where DMA engines 514
go to read transfer commands.

As illustrated in FIG. 5, in some embodiments, the DMA
engines 514A and 514B receive a DMA job notification 518
(a first DMA job notification 518 A to the DMA engine 514A
and a second DMA job notification 518B to the DMA engine
514B) from a primary DMA engine 522. The primary DMA
engine 522 that operates as a central agent that intermediates
between submitters of DMA jobs (e.g., a server, CPUs, and
the like) and secondary/remote DMA engines that perform
the actual data transfers (e.g., first DMA engine 514A and
second DMA engine 514B).

In some embodiments, such as previously described with
respect to FIG. 4, the primary DMA engine 522 submits the
first DMA job notification 518A and the second DMA job
notification 518B, which are the same signals, indicating
that one or more DMA workloads or DMA jobs have been
formed and filled in memory (such as the DMA buffer 516
or at a system memory module 512). In response to receiv-
ing the DMA notification 518, the DMA engines 514 A and
514B each independently fetch a DMA job description 520
from the DMA buffer 516 and split the DMA job workload
in a distributed decision manner in which two or more
separate entities (e.g., the two DMA engines 514A and
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514B) each read the same packet and independently deter-
mine how to perform the DMA transfer. Alternatively, in
other embodiments, the primary DMA engine 522 submits
DMA job descriptors directly to the DMA engines 514A and
514B and skips the step of instructing retrieval of DMA job
descriptions from buffer 516.

In addition to independently fetching the same DMA job
description from the same location (i.e., DMA buffer 516),
each of the DMA engines 514A and 514B also indepen-
dently determine a portion of data transfer requested by the
DMA transfer command to perform. For example, such as
described in more detail with respect to FIG. 4, the DMA
engines 514 perform hardware-managed coordination based
on splitting a whole DMA transfer packet and performance
of the DMA transfer (each DMA engine performing its
transfer in parallel with other DMA engines) by the closer
DMA engine 514 (such as closer via same-die cache or a
local DRAM without traversing an inter-chiplet intercon-
nect).

In some embodiments, the DMA engines 514 perform
hardware-managed coordination via a determination of
splitting packets of transfer commands based on an amount
of data transfer and interleaving the workload amongst
multiple DMA engines. For example, as illustrated in FIG.
5, the DMA job description 520 is a single transfer command
instructing the transfer of 1000 megabytes of data from
physical address X to physical address Y. In one embodi-
ment, the DMA engines 514 equally split the total DMA
transfer size amongst themselves. For example, the device
500 includes two DMA engines with the first DMA engine
514A having a global ID=0 and the second DMA engine
514B having a global ID=1. Accordingly, the device 500
hardware includes information identifying a total number
and a relative ordering of DMA engines within the hardware
configuration. In this example, after reading the same DMA
job description 520, the first DMA engine 514A (e.g., global
1ID=0) performs a first half of the DMA transfer by trans-
ferring the first 500 megabytes of data. Similarly, the second
DMA engine 415B (e.g., global ID=1) performs a second
half of the DMA transfer in parallel by transferring the
second 500 megabytes of data.

Those skilled in the art will recognize that this splitting of
transfer command workloads is not limited to the specific
embodiments described herein, and that any hardware-man-
aged coordination of DMA transfer and interleaving of
DMA workloads amongst multiple DMA engines is imple-
mentable without departing from the scope of this disclo-
sure. By way of non-limiting example, in some embodi-
ments, implementations of hardware-managed DMA
workload splitting include an odd/even byte number split
(e.g., on a single byte basis), memory channel addressing,
memory page sizes, memory page locations, alternating data
block basis that is not completely interleaved, or any other
type of interleaving. As will be appreciated the specific
interleaving size, in various embodiments, is dependent
upon the specific interconnect hardware, memory transfer
sizes, and caches within the system. The optimization of
interleaving type and which data split type is variable
dependent upon the type of system microarchitecture for
specific implementations. For example, in one embodiment,
the interleaving split size is based on page translation size
such that transfer size matches page translation size for
reducing an amount of page translations that would need to
be performed. In another embodiment, each DMA engine
514 is assigned a specific amount of data to be transferred
(e.g., 1000 megabytes) instead of address range. For
example, in such an embodiment, each DMA engine 514
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transfers 1000 megabytes of data in parallel with other DMA
engines such that the DMA job description 520 is a single
transfer command instructing the transfer of 1000 mega-
bytes of data from physical address X to physical address Y
only turns on the first DMA engine 514A while the second
DMA engine 514B remains idle.

In another embodiment, the first DMA job notification
518A to the DMA engine 514A and the second DMA job
notification 518B to the DMA engine 514B notifications are
not indicators that the DMA engines should go fetch the
DMA job description 520 from the DMA buffer 516. Rather,
the primary DMA engine 522 breaks out a single DMA job
(e.g., DMA job description 520 instructing the transfer of
1000 megabytes of data from physical address X to physical
address Y) into multiple smaller jobs and submits different
workloads to each separate DMA engine 514 individually.
Each secondary/remote DMA engine thus sees a portion of
the original DMA job description 520.

In this example, the primary DMA engine 522 splits the
DMA job description 520 into two smaller workloads by
submitting the first DMA job notification 518A instructing
the first DMA engine 514A (as a secondary/remote DMA
engine) to perform a first half of the DMA transfer by
transferring the first 500 megabytes of data. Similarly, the
primary DMA engine 522 submits the second DMA job
notification 518B instructing the second DMA engine 514B
(as a secondary/remote DMA engine) to perform a second
half of the DMA transfer by transferring the second 500
megabytes of data. After each individual secondary/remote
DMA engine finishes their respective portions of the DMA
job, the secondary DMA engines 514 notify the primary
DMA engine 522 of their work completion. Subsequently,
the primary DMA engine 522 communicates that the overall
entirety of the job has been completed.

In this example, each individual DMA engine 514 per-
forms the entirety of the job that is submitted to it (e.g., the
DMA engines 514 act as a pure dummy by performing
workloads assigned to it without any discretion, in contrast
to the previously described embodiment in which each
DMA engine individually determines which portion of a
workload is applicable to it locally). In various embodi-
ments, the primary DMA engine 522 determines a number
of DMA engines available for it to assign work to and/or
available bandwidth or other processing resources available
to each remote DMA engine.

FIG. 6 is a block diagram of a method 600 of performing
hardware-managed splitting of DMA transfer commands in
accordance with some embodiments. For ease of illustration
and description, the method 600 is described below with
reference to and in an example context of the systems and
devices of FIGS. 1-5. However, the method 600 is not
limited to these example contexts, but instead in different
embodiments is employed for any of a variety of possible
system configurations using the guidelines provided herein.

The method 600 begins at block 602 with the accessing,
by a first DMA engine, of a DMA transfer command and
determining a first portion of a data transfer requested by the
DMA transfer command. For example, such as illustrated in
FIG. 4 with respect to DMA engines 414, the DMA engines
414A and 414B receive a DMA notification 418 indicating
that one or more DMA workloads or DMA jobs have been
formed and filled in memory (such as the DMA buffer 416
or at a system memory module 412). In various embodi-
ments, such as previously described, the DMA notification
418 includes a doorbell ring or other notifier that indicates
DMA descriptors have been prepared in memory. In
response to receiving the DMA notification 418, the DMA
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engines 414A and 414B each independently fetch a DMA
job description 420 from the DMA buffer 416.

In some embodiments, each of the DMA engines 414A
and 414B also independently determine a portion of data
transfer requested by the DMA transfer command to per-
form. In one embodiment, DMA engines 414A and 414B
each issue speculative DMA transfers by broadcasting a
cache probe request 422 (e.g., a read and/or a write probe)
to the cache memory 410 and main memory (e.g., memory
module 412) of their respective chiplets 404. In response to
the cache probe requests, the cache memory 410 and main
memory of each chiplet 404 will return one or more return
responses to the requesting DMA engine. For example, for
a DMA read probe, the cache memories 410 can return a
cache hit or a cache miss to indicate whether the requested
data is found within cache memory 410.

In other embodiments, such as illustrated in FIG. 5 with
respect to DMA engines 514, DMA engines 514A and 514B
receive a DMA job notification 518 (a first DMA job
notification 518A to the DMA engine 514A and a second
DMA job notification 518B to the DMA engine 514B) from
a primary DMA engine 522. The primary DMA engine 522
breaks out a single DMA job (e.g., DMA job description 520
instructing the transfer of 1000 megabytes of data from
physical address X to physical address Y) into multiple
smaller jobs and submits different workloads to each sepa-
rate DMA engine 514 individually. Each secondary/remote
DMA engine thus sees a portion of the original DMA job
description 520.

The method 600 continues at block 604 with initiating,
based at least in part on the DMA transfer command, transfer
of the first portion of the data transfer by the first DMA
engine. For example, such as illustrated in FIG. 4 with
respect to the first DMA engine 414 A, to determine whether
some of the data associated with addresses X and Y is
currently residing in cache memory 410 (e.g., L3 or some
last level cache) of the first graphics processing stacked die
chiplet 404A, the DMA engine 414A broadcasts a cache
probe request 422 to the cache memory 410 (including cache
controllers [not shown]) before memory modules 412 and
receives one or more return responses indicating a cache hit
for address X and a cache miss for address Y. In the example
embodiment of FIG. 4, data for physical address X and
physical address Y are stored at the memory module 412
directly connected to the second graphics processing stacked
die chiplet 404B. Because the cache memory 410 of the first
graphics processing stacked die chiplet 404A already con-
tains the requested data for physical address X, the DMA
engine 414A performs the portion of data transfer associated
with address X (as opposed to retrieving the data from the
cache of a different chiplet).

In some embodiments, such as illustrated in FIG. 5 with
respect to the DMA engines 514, the DMA engines 514
perform hardware-managed coordination via a determina-
tion of splitting packets of transfer commands based on an
amount of data transfer and interleaving the workload
amongst multiple DMA engines. For example, as illustrated
in FIG. 5, the DMA job description 520 is a single transfer
command instructing the transfer of 1000 megabytes of data
from physical address X to physical address Y. In one
embodiment, the DMA engines 514 equally split the total
DMA transfer size amongst themselves. For example, the
device 500 includes two DMA engines with the first DMA
engine 514A having a global ID=0 and the second DMA
engine 514B having a global ID=1. Accordingly, the device
500 hardware includes information identifying a total num-
ber and a relative ordering of DMA engines within the
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hardware configuration. In this example, after reading the
same DMA job description 520, the first DM A engine 514A
(e.g., global ID=0) performs a first half of the DMA transfer
by transferring the first 500 megabytes of data. Similarly, the
second DMA engine 415B (e.g., global ID=1) performs a
second half of the DMA transfer in parallel by transferring
the second 500 megabytes of data.

The method 600 continues at block 606 with initiating,
based at least in part on the DMA transfer command, transfer
of a second portion of the data transfer by a second DMA
engine. For example, such as illustrated in FIG. 4 with
respect to the first DMA engine 414 A, to determine whether
some of the data associated with addresses X and Y is
currently residing in cache memory 410 of the second
graphics processing stacked die chiplet 404B, the DMA
engine 414B similarly broadcasts the cache probe request
422 to the cache memory 410 and receives one or more
return responses indicating a cache miss for address X and
a cache miss for address Y. Due to the cache probe request
422 resulting in a cache miss at both cache memories 410 of
the first and second chiplets 404, the DMA engine 414B of
the data-owning cache memory 410 performs DMA transfer
of data associated with physical address Y. In other words,
the DMA engine 414 that is closer to the data is the engine
that performs the DMA transfer.

At block 608, after transferring the first portion and the
second portion of the data transfer, an indication is generated
that signals completion of the data transfer requested by the
DMA transfer command. For example, such as illustrated in
FIG. 4, the DMA engines 414 signal that the DMA transfer
is completed, such as by sending an interrupt signal to the
processor cores 408 after some form of synchronization
between the DMA engines 414. Similarly, with respect to
FIG. 5, the secondary DMA engines 514 notify the primary
DMA engine 522 of their work completion after each
individual secondary/remote DMA engine finishes their
respective portions of the DMA job. Subsequently, the
primary DMA engine 522 communicates that the overall
entirety of the job has been completed.

Accordingly, as discussed herein, the hardware-managed
coordination of splitting a whole DMA transfer packet and
performance of the DMA transfer (each DMA engine per-
forming its transfer in parallel with other DMA engines) by
the closer DM A engine prevents the DMA transfer operation
from needing to read the data from memory across all
different channels (e.g., reading data from the cache memory
or DRAM associated with a different chiplet requires traffic
crossing the interconnect and taking an energy performance
hit). For example, those skilled in the art will recognize that
back-and-forth DMA traffic contends with other traffic and
consumes power. Thus, hardware-managed splitting of
DMA commands results in reduced power and increased
bandwidth for other traffic usages.

A computer readable storage medium may include any
non-transitory storage medium, or combination of non-
transitory storage media, accessible by a computer system
during use to provide instructions and/or data to the com-
puter system. Such storage media can include, but is not
limited to, optical media (e.g., compact disc (CD), digital
versatile disc (DVD), Blu-Ray disc), magnetic media (e.g.,
floppy disc, magnetic tape, or magnetic hard drive), volatile
memory (e.g., random access memory (RAM) or cache),
non-volatile memory (e.g., read-only memory (ROM) or
Flash memory), or microelectromechanical systems
(MEMS)-based storage media. The computer readable stor-
age medium may be embedded in the computing system
(e.g., system RAM or ROM), fixedly attached to the com-
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puting system (e.g., a magnetic hard drive), removably
attached to the computing system (e.g., an optical disc or
Universal Serial Bus (USB)-based Flash memory), or
coupled to the computer system via a wired or wireless
network (e.g., network accessible storage (NAS)).

In some embodiments, certain aspects of the techniques
described above may implemented by one or more proces-
sors of a processing system executing software. The soft-
ware includes one or more sets of executable instructions
stored or otherwise tangibly embodied on a non-transitory
computer readable storage medium. The software can
include the instructions and certain data that, when executed
by the one or more processors, manipulate the one or more
processors to perform one or more aspects of the techniques
described above. The non-transitory computer readable stor-
age medium can include, for example, a magnetic or optical
disk storage device, solid state storage devices such as Flash
memory, a cache, random access memory (RAM) or other
non-volatile memory device or devices, and the like. The
executable instructions stored on the non-transitory com-
puter readable storage medium may be in source code,
assembly language code, object code, or other instruction
format that is interpreted or otherwise executable by one or
more Processors.

Note that not all of the activities or elements described
above in the general description are required, that a portion
of a specific activity or device may not be required, and that
one or more further activities may be performed, or elements
included, in addition to those described. Still further, the
order in which activities are listed are not necessarily the
order in which they are performed. Also, the concepts have
been described with reference to specific embodiments.
However, one of ordinary skill in the art appreciates that
various modifications and changes can be made without
departing from the scope of the present disclosure as set
forth in the claims below. Accordingly, the specification and
figures are to be regarded in an illustrative rather than a
restrictive sense, and all such modifications are intended to
be included within the scope of the present disclosure.

Benefits, other advantages, and solutions to problems
have been described above with regard to specific embodi-
ments. However, the benefits, advantages, solutions to prob-
lems, and any feature(s) that may cause any benefit, advan-
tage, or solution to occur or become more pronounced are
not to be construed as a critical, required, or essential feature
of any or all the claims. Moreover, the particular embodi-
ments disclosed above are illustrative only, as the disclosed
subject matter may be modified and practiced in different but
equivalent manners apparent to those skilled in the art
having the benefit of the teachings herein. No limitations are
intended to the details of construction or design herein
shown, other than as described in the claims below. It is
therefore evident that the particular embodiments disclosed
above may be altered or modified and all such variations are
considered within the scope of the disclosed subject matter.
Accordingly, the protection sought herein is as set forth in
the claims below.

What is claimed is:

1. A method, comprising:

initiating, based at least in part on a DMA transfer
command, transfer of a first portion of a data transter by
a first DMA engine; and

initiating, based at least in part on the DMA transfer
command, transfer of a second portion of the data
transfer by a second DMA engine.
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2. The method of claim 1, further comprising:

receiving, by the first DMA engine, a DMA notification
indicating that the DMA transfer command is stored at
a DMA buffer in system memory; and

fetching, by the first DMA engine, the DMA transfer
command from the DMA buffer.

3. The method of claim 2, wherein initiating transfer of
the first portion of the data transfer by the first DM A engine
further comprises:

transmitting, by the first DMA engine, a cache probe
request to a cache memory; and

transferring the first portion of the data transfer based on
receiving a return response indicting a cache hit in the
cache memory.

4. The method of claim 2, wherein initiating transfer of
the second portion of the data transfer by the second DMA
engine further comprises:

transmitting, by the second DMA engine, a cache probe
request to a cache memory; and

transferring the second portion of the data transfer from
an owner main memory based on receiving a return
response indicting a cache miss in the cache memory.

5. The method of claim 1, wherein determining the first
portion of the data transfer further includes interleaving a
total DMA transfer size between the first DMA engine and
the second DMA engine.

6. The method of claim 1, further comprising:

receiving, at a primary DMA engine, the DMA transfer
command and splitting the DMA transfer command
into a plurality of smaller workloads.

7. The method of claim 6, further comprising:

receiving, from the primary DMA engine, one of the
plurality of smaller workloads.

8. A processor device, comprising:

a base integrated circuit (IC) die including a plurality of
processing stacked die chiplets 3D stacked on top of the
base IC die, wherein the base IC die includes an
inter-chip data fabric communicably coupling the pro-
cessing stacked die chiplets together; and

a plurality of DMA engines 3D stacked on top of the base
IC die, wherein the plurality of DMA engines are each
configured to perform a portion of a data transfer
requested by a DMA transfer command.

9. The processor device of claim 8, wherein each of the
plurality of DMA engines include a single command engine
that drives multiple transfer engines.

10. The processor device of claim 8, wherein each of the
plurality of DMA engines is configured to receive a DMA
notification indicating that the DMA transfer command is
stored at a DMA buffer in system memory.

11. The processor device of claim 8, wherein a first DMA
engine of the plurality of DMA engines is configured to
transmit a cache probe request to a cache memory commu-
nicably coupled to a first processing stacked die chiplet and
transfer a first portion of the data transfer based on receiving
a return response indicting a cache hit in the cache memory.

12. The processor device of claim 11, wherein a second
DMA engine of the plurality of DMA engines is configured
to transmit the cache probe request to a cache memory
communicably coupled to a second processing stacked die
chiplet and transfer a second portion of the data transfer
from an owner main memory based on receiving a return
response indicting a cache miss in the cache memory.

13. The processor device of claim 8, wherein each of the
plurality of DMA engines are configured to independently
determine the portion of the data transfer by interleaving a
total DMA transfer size amongst the plurality of DMA
engines.
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14. The processor device of claim 8, further comprising:

a primary DMA engine configured to receive the DMA
transfer command and split the DMA transfer com-
mand into a plurality of smaller workloads.

15. The processor device of claim 14, wherein the primary
DMA engine is further configured to submit a different
workload of the plurality of smaller workloads to each of the
plurality of DMA engines.

16. A system, comprising:

a host processor communicably coupled to a parallel
processor multi-chip module, wherein the parallel pro-
cessor multi-chip module includes:

a base integrated circuit (IC) die including a plurality of
processing stacked die chiplets 3D stacked on top of
the base IC die, wherein the base IC die includes an
inter-chip data fabric communicably coupling the
processing stacked die chiplets together; and

a plurality of DMA engines 3D stacked on top of the
base IC die, wherein the plurality of DMA engines
are each configured to perform a portion of a data
transfer requested by a DMA transfer command.

17. The system of claim 16, further comprising:

a primary DMA engine configured to receive the DMA
transfer command and split the DMA transfer com-
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mand into a plurality of smaller workloads, wherein the
primary DMA engine is further configured to submit a
different workload of the plurality of smaller workloads
to each of the plurality of DMA engines.

18. The system of claim 16, wherein each of the plurality
of DMA engines are configured to independently determine
the portion of the data transfer by interleaving a total DMA
transfer size amongst the plurality of DMA engines.

19. The system of claim 16, wherein a first DMA engine
of the plurality of DMA engines is configured to transmit a
cache probe request to a cache memory communicably
coupled to a first processing stacked die chiplet and transfer
a first portion of the data transfer based on receiving a return
response indicting a cache hit in the cache memory.

20. The system of claim 19, wherein a second DMA
engine of the plurality of DMA engines is configured to
transmit the cache probe request to a cache memory com-
municably coupled to a second processing stacked die
chiplet and transfer a second portion of the data transfer
from an owner main memory based on receiving a return
response indicting a cache miss in the cache memory.
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