US011663001B2

a2 United States Patent

Sen et al.

US 11,663,001 B2
May 30, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

FAMILY OF LOSSY SPARSE LOAD SIMD
INSTRUCTIONS

Applicant: Advanced Micro Devices, Inc., Santa
Clara, CA (US)

Inventors: Sanchari Sen, West Lafayette, IN (US);

Derrick Allen Aguren, Austin, TX

(US); Joseph Lee Greathouse, Austin,

X (US)

Assignee: Advanced Micro Devices, Inc., Santa

Clara, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

Appl. No.: 16/194,981
Filed: Nov. 19, 2018

Prior Publication Data

US 2020/0159529 Al May 21, 2020

Int. CL.

GO6F 9/30 (2018.01)

GO6F 9/38 (2018.01)

GO6F 17/16 (2006.01)

GO6N 3/04 (2023.01)

U.S. CL

CPC ... GO6F 9/30014 (2013.01); GOGF 9/30036

(2013.01); GO6F 9/3887 (2013.01); GO6F
17/16 (2013.01); GO6N 3/04 (2013.01)
Field of Classification Search
CPC GO6F 17/16; GOGF 9/3887; GOGF 9/30036;
GOG6F 15/8061; GOGF 9/30014; GOGF
17/30069
See application file for complete search history.

805
2

Load Instruction For
Execution

Receive a Lossy Sparse

l 810
2

Lossy Sparse Load
Instructions

Determine How Many Non-
Zero Values are included in
QOne or More input Vector
Operands of the Received

Number
of Non-Zero Values
< Threshold?

820
2

for Execution

Prevent the Instruction for the|
One or More input Vector
Operands from being Issued

Execution

(56) References Cited

U.S. PATENT DOCUMENTS

6,094,718 A * 7/2000 Tanaka GOGF 9/30069
712/34

10,572,568 B2* 2/2020 Narayanamoorthy
GOGF 9/30043

10,817,260 Bl * 10/2020 Huang GOGF 7/50

(Continued)

OTHER PUBLICATIONS

Mao, Huizi & Han, Song & Pool, Jeff & Li, Wenshuo & Liu, Xingyu
& Wang, Yu & Dally, William. Exploring the Regularity of Sparse
Structure in Convolutional Neural Networks. (Year: 2017).*

(Continued)

Primary Examiner — Keith E Vicary

Assistant Examiner — Kasim Alli

(74) Attorney, Agent, or Firm — Kowert Hood Munyon
Rankin and Goetzel PC; Rory D. Rankin

(57) ABSTRACT

Systems, apparatuses, and methods for implementing a
family of lossy sparse load single instruction, multiple data
(SIMD) instructions are disclosed. A lossy sparse load unit
(LSLU) loads a plurality of values from one or more input
vector operands and determines how many non-zero values
are included in one or more input vector operands of a given
instruction. If the one or more input vector operands have
less than a threshold number of non-zero values, then the
LSLU causes an instruction for processing the one or more
input vector operands to be skipped. In this case, the
processing of the instruction of the one or more input vector
operands is deemed to be redundant. If the one or more input
vector operands have greater than or equal to the threshold
number of non-zero values, then the LSLU causes an
instruction for processing the input vector operand(s) to be
executed.

20 Claims, 14 Drawing Sheets

800

825
I 2

Cause the Instruction for the
Qne or More input Vector
Operands to be Issued for

US 11,663,001 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2004/0117595 Al1* 6/2004 Norriscocoovvnnee. GOG6F 9/3552
711/214

2018/0046916 Al* 2/2018 Dallyccocoevvvvnn. GO6N 3/063

2018/0232640 Al* 8/2018 ... GO6N 3/082

2018/0300605 Al 10/2018

2019/0205358 Al* 7/2019 Diril ... GO6N 3/063

2019/0205746 Al* 7/2019 Nurvitadhi GO6N 3/063

OTHER PUBLICATIONS

A. H. Zaabab, Qi-Jun Zhang and M. S. Nakhla, “Device and
circuit-level modeling using neural networks with faster training
based on network sparsity,” in IEEE Transactions on Microwave
Theory and Techniques, vol. 45, No. 10, pp. 1696-1704, (Year:
1997).*

Han et al., “EIE: Efficient Inference Engine on Compressed Deep
Neural Network”, ACM SIGARCH Computer Architecture News,
May 3, 2016, 12 pages.

Parashar et al., “SCNN: An Accelerator for Compressed-sparse
Convolutional Neural Networks”, ACM SIGARCH Computer Archi-
tecture News, May 23, 2017, 12 pages.

Wen et al., “Learning Structured Sparsity in Deep Neural Net-
works”, 30th Conference on Neural Information Processing Sys-
tems (NIPS 2016), Dec. 2016, 9 pages.

Yu et al., “Scalpel: Customizing DNN Pruning to the Underlying
Hardware Parallelism”, 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), Jun. 2017, pp.
548-560, vol. 1.

International Search Report and Written Opinion in International
Application No. PCT/US2019/039264, dated Oct. 9, 2019, 14
pages.

Mao et al., “Exploring the Regularity of Sparse Structure in Con-
volutional Neural Networks”, 31st Conference on Neural Informa-
tion Processing Systems (NIPS 2017), Jun. 5, 2017, 10 pages,
https://arxiv.org/pdf/1705.08922.pdf. [Retrieved May 7, 2019].
Narang et al., “Block-Sparse Recurrent Neural Networks”, Nov. 8,
2017, 12 pages, https://arxiv.org/pdf/1711.02782.pdf.

Non-Final Office Action in Japanese Patent Application No. 2021-
521289, dated May 10, 2022, 7 pages.

First Examination Report in Indian Patent Application No.
202117017754, dated Feb. 9, 2022, 8 pages.

* cited by examiner

U.S. Patent May 30, 2023 Sheet 1 of 14 US 11,663,001 B2

s
| 125
Neural
Network
105
e
«—> Interfaces
120
Processor(s)
110
Memory
«—> Subsystem
130

FIG. 1

US 11,663,001 B2

Sheet 2 of 14

May 30, 2023

U.S. Patent

¢ 9ld 002
N
NGGC i
pun ejndwio) 0¢C
- Aowsyy
. /8007
oS 74 097 0z
s nig %5 aie Bl nia BN ane ;M\thoo
Jun endwon 184019 H 1 ouie
" foch
T Laish
— jyun endwio) JSAS
05C 0r (434
wun &> 21607 < 10S$830.
yoedsiq jo4jU0) PUBLILIO?)
G0¢
Ndo

U.S. Patent May 30, 2023 Sheet 3 of 14 US 11,663,001 B2

i
Memory 10
Lossy Sparse Load Unit
(LSLU) 305
VGPR >
Mask/Thres
315 306

Comparator
307
Buffer
308

SIMD
Units

Scheduler
325

FIG. 3

U.S. Patent May 30, 2023 Sheet 4 of 14 US 11,663,001 B2

400

/

/ Input AddrA, AddrB, ldx, maxidx 405

Y

vA[O:numThreads-1] = Mem[AddrA[0:numThreads-1]]
vB[0:numThreads-1] = Mem[AddrB[0:numThreads-1]] |.-410
NXCountA=No. of non-zeros in vA[0:numThreads-1]
NXCountB=No. of non-zeros in vB[0:numThreads-1]

NZCountA < NZThres &
NZCountB < NZThres &
ldx < maxidx?

415 No

!
425~/ ouput Va, o, 16x_//

AddrA += strideA | 420
AddrB += strideB
[dx++

FIG. 4

U.S. Patent May 30, 2023 Sheet 5 of 14 US 11,663,001 B2

/ Input Addr, operandiD, N /\“5{}5
.

mo o510

No

530 / QOutput v /

VIION-1 = mem{AddrdlION-1]] 1 _5op
accNZCountfoperandiDJi] +=No.
of non-zeros in viijO:N-1]

I

et 525

FIG. 5

U.S. Patent May 30, 2023 Sheet 6 of 14 US 11,663,001 B2

600

{J

/ Input accNZCount / 605
:

w0610

No

< i<numThreads? >

~2eeNZCountiOli] < NZThres &

e _GCCNZCount[i < NZThres?

¥

" 630 threadRedundanti] = 0

625

635

waveRedundant =
bitwise AND({threadRedundant)

645 ~_Dutput wavei?edundari@//

FIG. 6

U.S. Patent May 30, 2023 Sheet 7 of 14 US 11,663,001 B2

700

/

/ Input Addr, N, r_offset1, r_offset2, r_base /(710

I

=0 710

715 <07 N0

:
Yes 740 \/ Output v /

V[ij[0:numThreads-1] = Mem[Addr[ij[0.numThreads-1]] | 720
NZCountfi] = No. of non-zeros in v[iJ[0:numThreads-1]

Yes

730 ~| Generate redundant MAC indices (rldx)

Write ridx to skipQueue
j++ |_~735

FIG. 7

Sheet 8 of 14

U.S. Patent May 30, 2023

805
]

Receive a Lossy Sparse
Load Instruction For
Execution

810
i D

Determine How Many Non-
Zero Values are Included in
One or More input Vector
Operands of the Received
Lossy Sparse Load
Instructions

815

Number No

of Non-Zero Values
< Threshold?

820
)

Prevent the Instruction for the
One or More Input Vector
Operands from being Issued
for Execution

825
Y)

Cause the Instruction for the
One or More Input Vector
Operands to be Issued for

Execution

FIG. 8

US 11,663,001 B2

800
’,.J

U.S. Patent

May 30, 2023 Sheet 9 of 14

905
)

Receive Program Code to
Implement a Neural Network

910
A Pd

Execute One or More First
Instructions from the
Program Code on a Plurality
of Compute Units

915
Yy 2

Skip Execution of One or
More Second Instructions
from the Program Code on
the Plurality of Compute
Units

920
i J

Implement the Neural
Network by Executing the
One or More First
Instructions and Skipping
Execution of the One or More
Second Instructions

925
Y Z

Use the Neural Network to
Generate a Classification of a
First Dataset

FIG. 9

US 11,663,001 B2

900
’,J

U.S. Patent May 30, 2023 Sheet 10 of 14 US 11,663,001 B2

1005

// Matrix multiplication between matrices A (M x K) and B (K x P)

// MatrixA and MatrixB are pointers to matrices A and B

// A is stored in row major format, B is stored in column major format
function matrixMul (float *MatrixA, float *MatrixB, int M, int K, int P) {

float MatrixC[M][P];
for (int i=0; i<M; i++)
for (int j=0; j<P; j++)
MatrixC[i]fj] = innerProd (MatrixA + i*K, MatrixB + j*K, K);
return MatrixC;

1010

// Matrix multiplication between matrices A (M x K) and B (K x P)

// MatrixA and MatrixB are pointers to matrices A and B

// N is the block size

A A is stored in row major format, B is stored in column major format
function matrixMul(float *MatrixA, float *MatrixB, int M, int K, int P){

float MatrixC{M][P];
for (int i=0; <M i=i+N)
for (int j=0; j<P; j=j+N)
MatrixC[i:i+NJjj;+N]J = outerProd(MatrixA + i*K, MatrixB + /K, K, N);
return MatrixC;

FIG. 10

U.S. Patent May 30, 2023 Sheet 11 of 14 US 11,663,001 B2

1105
]

function innerProd(float *vectorA, float *vectorB, int K) {
float vAlnumThreads], vB[numThreads]; // Vector registers storing A and B values
float vC[numThreads]; // Vector registers storing partial C values per thread
float Cij; // Final inner product value
vC = initializeZeros(numThreads); // Initialize zeros in partial C values
// lterate across the common dimension K between matrices A and B
for (ii = 0; ii < K; i += numThreads){
// Load non-zeros in vA and vB and return the corresponding loopldx
vAfthreadID], vB[threadID], ii =v_Icsld(vectorA + ii, vectorB + ii, ii, K);
// Calculate C values per thread
parallel_for (threadID = 0; threadID < numThreads; threadID++) {
vCfthreadID] += vA[threadID] * vB[thread!D];
}
}
// Add C element-wise across all threads to get the final Cij
Cij = elementWiseSumAcross Threads(vC),
refurn Cij;
}
/ Vector Lossy Combined Sparse Load instruction function implemented in LSLU
function v_Icsld(float *vectorA, float *vectorB, int idx, int maxldx){
float vA[numThreads], vB[numThreads]; // A and B Values across threads
int NZCountA = 0, NZCountB = 0, // No. of non-zeros in A and B
int NZthres = interThreadThres; // Set Thres for Non-zeros
while (1){ // Keep loading A and B till termination condition is reached
// Load A and B values from memory
vA = loadFromMemory(vectorA);
vB = loadFromMemory(vectorB);
// Count no. of non-zeros in A and B across threads in this iteration
for (=0; iknumThreads; i++) {
if (vA[i] I= 0) NZCountA++;
if (vB[i] I= 0) NZCountB++;
}
if ((NZCountA < NZThres) or (NZCountB < NZThres)) and (idx < maxidx)) {
// Termination condition not met
idx += numThreads; // Increment the loop index
vectorA += numThreads™sizeof(float); // Update A pointer
vectorB += numThreads*sizeof(float); // Update B pointer
} else {// Termination condition met
break;

}
}

refum vA, vB, idx;

FIG. 11

US 11,663,001 B2

Sheet 12 of 14

May 30, 2023

U.S. Patent

Juno) Aowepy
J0}09A JUBWBII8(]

ZL old w0zl
S~
[21SANHdOA 03 A [11SANHdOA 03 A
N paY2BeY UOIIPUOY) UOIRUILLIS |

v ooer |

| 2607 Juepunpays| |

I Bupfoay) _

_

| iz “ NW

_ _

_ _

_

| mwfﬁ S8l LZN mem g SYIZN | DIEAS!

_ _

_ sally] [eA saly | [eA _ “xwm@mxsg

| < SoNje/ JO ‘ON < SaNje/ JO "ON | >

_ _ g Xpl xapu

L ___3_ __l____——7_ _J = Juaun?)

_ =
1¢9 L10] €9 L0
Jojeiousy) g epujs
gn .ﬁ VA ﬁ SSaIppPY JXeN pue v apiis
— = 9
qoct M Gich
ayoen «—N
N le
g ippy pue y ippy

U.S. Patent May 30, 2023 Sheet 13 of 14 US 11,663,001 B2

1305
g

function outerProd(float *MatrixA, float *MatrixB, int K, int N) {
float vA[numThreads][N], vB[num Threads][N]; // N vector registers each for storing A & B
float mClnum Threads][NJIN]; # N x N Vector registers storing product matrix C
// Accumulated non-zero value counts for each matrix operand (A and B) per thread
int accNZCount[2][numThreads];
mC = initializeZeros(numThreads, N, N); // initialize zeros in C
for (i = 0; ii < K; ii += numThreads){// lterate across the common dimension K
/A Initialize all 0s in the accumulated non-zero count arrays
accNZCount = initializeZeros(2, numThreads);
// Load vectors A and B into VGPR using v_Issld instruction
vA = v_Issld(MatrixA + ii*sizeof(float), 0, N);
vB = v_Issld(MatrixB + ii*sizeof(float), 1, N);
// Check if the block of MACs is redundant (can be skipped)
if (s_z_check_branch(accNZCount) == 1) {
continue; // No need to re-evaluate mC
} else {#/ The block of MAC:s is irredundant and cannot be skipped
parallel_for (threadID = 0; threadID < numThreads; thread|D++) {
/ Calculate C values per thread
for (i=0; <N it+)
for (j=0; j<N; j++)
mClthreadID][iJ[j] += vAfthreadID]fi*vB[threadID][j]; }}}
// Add mC element-wise across all threads to get the final C (N x N)
mC_final = elementWiseSumAcross Threads(mC);
return mC_final}
// Vector Lossy Single Sparse Load instruction function implemented in LSLU
functionv_Issld(float *Matrix, int operandID, int N){
float m{numThreads][N]; // Vector values per thread
m = loadFromMemory(Matrix, N); // Load N contiguous values from memory for each thread
parallel_for (i=0; i<numThreads; i++) // Update accumulated non-zero counts
accNZCountfoperandID]fi] += numNonZeros(m[iJ[0:N]);
return m; }
functions_z_check_branch(int accNZCount{JjnumThreads]){
bool threadRedundant{num Threads], waveRedundant;
// Check redundant conditions for each thread in a wavefront
// No. of non-zeros in each thread should be less than intraThreadThres
int NZThres = intraThreadThres;
parallel_for (i=0; iknumThreads; i++)
threadRedundant[i] = (accNZCount[0]fi] < NZThres) or (accNZCount[1]fi < NZThres);
// Check if each Thread is redundant
waveRedundant = bitwiseAND(threadRedundant);
return waveRedundant; }

FIG. 13

U.S. Patent May 30, 2023 Sheet 14 of 14 US 11,663,001 B2

1405
J

class skipQueue{ // SkipQueue entry fields
int redundantldx; // Index of redundant MAC
skipQueue *next; // Next entry in queue };
skipQueue *head, *tail; // Head and tail of queue
function outerProd(float *MatrixA, float *MatrixB) {
float vA[numThreads]N], vBlnum Threads][N]; // N vector registers each for storing A & B
float mClnumThreads][NJINJ; // N x N Vector registers storing product matrix C
mC = initializeZeros(numThreads, N, N); // Initialize zeros in C
head = NULL; tail = NULL; / Initialize heads and tails of the queue to NULL
// Redundant MAC index calculation fields for A and B
r_sizeA= N; r_baseA = 0; r_offset1A = 1, r_offset2A = N;
r_sizeB= N; r_baseB = 0; r_offset1B = N; r_offset2B = 1;
for (i = 0; ji < K; ii += numThreads) { / lterate across the common dimension K
// Load vectors A and B into VGPR using v_Isls instruction
vA = v_Isls(MatrixA + ii*sizeof(float), r_sizeA, r_offset1A, r_offset?A, r_baseA);
vB = v_Isis(MatrixB + ii*sizeof(float), r_sizeB, r_offset1B, r_offset2B, r_baseB);
for (i=0; i<N; i++) // Calculate NxN C values
for (=0; j<N; j++)
// Check if current MAC index is at the head of queue
if (checkSkipQueue(i*N + j) == 1) {
continue;
}else {// Update mC in each thread
parallel_for (threadID = 0; threadID < numThreads; threadlD++)
mClthreadID]fij[j] += vAfthreadID][iT*vB[threadID][j]; }}
/#/ Add mC element-wise across all threads to get the final C (N x N)
mC_final = elementWiseSumAcross Threads(mC);
return mC_final; }
// Vector Lossy Sparse Load and Skip instruction function implemented in LSLU
function v_Isls(float *Matrix, int r_size, inf r_offset1, int r_offset2, int r_base){
float m{numThreads]fr_size]: // Vector values per thread
bool NZCount[r_size]; // No. of non-zeros across threads for each value
m = loadFromMemory(Matrix, r_size); // Load values from memory for each thread
NZCount = initializeZeros(r_size); // Initialize all Os in the NZCount vector
// Check if each thread loaded a vector of 0 values
parallel_for (i=0; i<r_size; i++) {
NZCountfi] = numNonZeros(m[:][i]);
if (NZCount[i] < interThreadThres) {// v[i] almost 0 across all the threads
for (F0; j<r_size; j++) {if Generate all redundant MACs operating on vfi]
rldx = base + offset1% + offset2™i; // redundant MAC index
write ToSkipQueue(rldx, tail); #/ Add redundant index to SkipQueue }}}
returnm; }
function checkSkipQueue(int MACidx, skipQueue *head){
if ((head = NULL) and (head->redundantldx == MACidx)){ // Check index af head of Queue
removeFromSkipQueue(MACidx, head);
return 1, // Present in skipQueue
}else
return 0; // Absent from skipQueue }

FIG. 14

US 11,663,001 B2

1
FAMILY OF LOSSY SPARSE LOAD SIMD
INSTRUCTIONS

BACKGROUND
Description of the Related Art

An emerging technology field is machine learning, with a
neural network being one type of a machine learning model.
Neural networks have demonstrated excellent performance
at tasks such as hand-written digit classification and face
detection. Additionally, neural networks have also shown
promise for performing well in other, more challenging,
visual classification tasks. Other applications for neural
networks include speech recognition, language modeling,
sentiment analysis, text prediction, and others.

Deep neural networks (DNNs) are known to exhibit
sparsity, or zero values, in their different data structures. For
example, the activations in ResNet-50 and AlexNet exhibit
average sparsities of 58% and 55%, respectively, while the
weights in DeepCompression AlexNet exhibit 65% sparsity
during the inference phase. Zero values in DNN data struc-
tures cause the resultant multiply-add (MAD) operations,
which may be part of multiply-accumulate (MAC) opera-
tions, to be unnecessary and inefficient. This results in
inefficient implementations of DNNs on typical hardware
platforms.

BRIEF DESCRIPTION OF THE DRAWINGS

The advantages of the methods and mechanisms
described herein may be better understood by referring to
the following description in conjunction with the accompa-
nying drawings, in which:

FIG. 1 is a block diagram of one implementation of a
computing system.

FIG. 2 is a block diagram of another implementation of a
computing system.

FIG. 3 is a block diagram of one implementation of
compute unit logic.

FIG. 4 is a generalized flow diagram illustrating one
implementation of a method for executing a vector lossy
combined sparse load instruction.

FIG. 5 is a generalized flow diagram illustrating one
implementation of a method for executing a vector lossy
single sparse load instruction.

FIG. 6 is a generalized flow diagram illustrating one
implementation of a method for processing an accumulated
non-zero count array.

FIG. 7 is a generalized flow diagram illustrating one
implementation of a method for executing a vector lossy
sparse load and skip instruction.

FIG. 8 is a generalized flow diagram illustrating one
implementation of a method for executing a lossy sparse
load instruction.

FIG. 9 is a generalized flow diagram illustrating one
implementation of a method for implementing a neural
network.

FIG. 10 illustrates examples of pseudocode for imple-
menting inner product and outer product matrix multiplica-
tion operations in accordance with one implementation.

FIG. 11 illustrates an example of pseudocode for imple-
menting a vector lossy combined sparse load instruction in
accordance with one implementation.

FIG. 12 is a block diagram of one implementation of logic
for implementing a vector lossy combined sparse load
instruction.

25

30

40

45

55

2

FIG. 13 illustrates an example of pseudocode for imple-
menting a vector lossy single sparse load instruction in
accordance with one implementation.

FIG. 14 illustrates an example of pseudocode for imple-
menting a vector lossy sparse load and skip instruction in
accordance with one implementation.

DETAILED DESCRIPTION OF
IMPLEMENTATIONS

In the following description, numerous specific details are
set forth to provide a thorough understanding of the methods
and mechanisms presented herein. However, one having
ordinary skill in the art should recognize that the various
implementations may be practiced without these specific
details. In some instances, well-known structures, compo-
nents, signals, computer program instructions, and tech-
niques have not been shown in detail to avoid obscuring the
approaches described herein. It will be appreciated that for
simplicity and clarity of illustration, elements shown in the
figures have not necessarily been drawn to scale. For
example, the dimensions of some of the elements may be
exaggerated relative to other elements.

Various systems, apparatuses, and methods for imple-
menting a family of lossy sparse load single instruction,
multiple data (SIMD) instructions are disclosed herein.
Deep neural network (DNN) data structures typically
include some amount of sparsity (i.e., zero values). In
various implementations, a family of SIMD lossy sparse
load instructions and associated microarchitectural exten-
sions are utilized by the system. This family of instructions
optimizes processor performance and power for dynamic
sparsity that is encountered during DNN training and infer-
ence. In one implementation, redundant multiply-accumu-
late (MAC) or multiply-add (MAD) operations are identified
and eliminated by subjecting input vector operands to a
user-defined mask. The user-defined mask optionally
imposes additional sparsity on an input data structure to
boost performance and power gains by exploiting the resil-
iency of a particular DNN. In various implementations,
instructions are skipped on a wavefront (i.e., warp) basis by
the SIMD scheduler as a block or selectively via a skip
queue.

A system includes at least a processor with a plurality of
compute units coupled to one or more memories. In one
implementation, each compute unit includes a lossy sparse
load unit and a plurality of processing elements. In one
implementation, the processing elements are SIMD units. In
one implementation, the lossy sparse load unit determines
how many non-zero values are present in one or more input
vector operands of a pending instruction. In one implemen-
tation, the lossy sparse load unit causes the one or more input
vector operands to be processed by the plurality of process-
ing elements responsive to determining that the number of
non-zero values in the one or more input vector operands is
greater than or equal to a threshold. Otherwise, if the number
of non-zero values in the one or more input vector operands
is less than the threshold, then the lossy sparse load unit
causes processing of the one or more input vector operands
by the plurality of processing elements to be skipped. In one
implementation, the threshold is programmable.

In one implementation, the system receives program code
of'a neural network for execution by the system’s processing
elements, with the program code including one or more first
instructions and one or more second instructions. The sys-
tem executes the first instructions on the processing ele-
ments and skips execution of the second instructions on the

US 11,663,001 B2

3

number of non-zero values in input vector operands of the
first and second instructions. The system implements a
neural network by executing the first instructions and skip-
ping the second instructions. In one implementation, the
system implements the neural network to generate a classi-
fication of a first dataset. It is noted that in the above
characterization, the first instructions and second instruc-
tions are not identifiable beforehand. Rather, the first instruc-
tions are identified at runtime based on their operands
having less than a threshold amount of sparsity while the
second instructions are identified at runtime based on their
operands having greater than or equal to a threshold amount
of sparsity. In various implementations, the threshold
amount of sparsity is user-configurable based on a tolerance
for error in the implementation of the neural network.

Referring now to FIG. 1, a block diagram of one imple-
mentation of a computing system 100 is shown. In one
implementation, computing system 100 includes at least
neural network 105, processor(s) 110, input/output (I/O)
interfaces 120, bus 125, and memory subsystem 130. In
other implementations, computing system 100 can include
other components and/or computing system 100 can be
arranged differently. In various implementations, neural
network 105 includes logic for implementing any of various
machine learning algorithms or machine learning models. In
one implementation, neural network 105 implements one or
more layers of a convolutional neural network. For example,
in this implementation, neural network 105 implements one
or more convolutional layers and/or one or more fully
connected layers. In another implementation, neural net-
work 105 implements one or more layers of a recurrent
neural network. In various implementations, neural network
105 is trained using a backward propagation algorithm via
stochastic gradient-descent (SGD). In one implementation,
the logic of neural network 105 includes a plurality of
multiplier-accumulate (MAC) units, peripherals, and inter-
nal memory storage. Depending on the implementation, any
of various software deep learning frameworks (e.g., Caffe,
TensorFlow, Torch) are used for training neural network 105
on a particular processing unit (e.g., graphics processing unit
(GPU)).

Neural network 105 is utilized in a variety of different
applications which vary according to the implementation.
For example, in one implementation, neural network 105
analyzes a video frame to generate one or more label
probabilities for the video frame. For example, potential use
cases include at least eye tracking, object recognition, point
cloud estimation, ray tracing, light field modeling, depth
tracking, and others. For eye tracking use cases, probabili-
ties generated by neural network 105 are based on learned
patterns, dwell, transition angles, blink, etc. In other imple-
mentations, neural network 105 is trained and customized
for other types of use cases.

Generally speaking, neural network implementations
exhibit two broad types of sparsity. The first sparsity is static
sparsity in weights caused by pruning networks. The second
sparsity is dynamic sparsity in activations, as well as, errors
in training. The sparsity in activations is caused by the
presence of activation functions such as Rectified Linear
Unit (ReLU), a function which zeroes out negative inputs. In
contrast, the sparsity in errors stems from the presence of
both activation functions and Max Pooling layers as zeros
can be propagated back for negative inputs of activation
functions like RelLU and non-maximum inputs of Max
Pooling layers. To exploit the static and dynamic sparsity
present in data structures being processed by neural network
105, a family of instructions and associated microarchitec-

20

30

40

45

4

tural extensions are introduced in this disclosure. The family
of instructions and associated microarchitectural extensions
enable performance to be improved and power consumption
to be reduced for neural network 105.

Processors(s) 110 are representative of any number and
type of processing units (e.g., central processing unit (CPU),
graphics processing unit (GPU), digital signal processor
(DSP), field programmable gate array (FPGA), application
specific integrated circuit (ASIC)). In one implementation,
some of the processing associated with neural network 105
is performed by processor(s) 110. Additionally, neural net-
work 105 is implemented using any of these types of
processing units and/or other types of processing elements.
Memory subsystem 130 are representative of any number
and type of memory devices. For example, the type of
memory in memory subsystem 130 can include high-band-
width memory (HBM), non-volatile memory (NVM),
Dynamic Random Access Memory (DRAM), Static Ran-
dom Access Memory (SRAM), NAND Flash memory, NOR
flash memory, Ferroelectric Random Access Memory (Fe-
RAM), or others. Memory subsystem 130 is accessible by
neural network 105 and processor(s) 110. I/O interfaces 120
are representative of any number and type of /O interfaces
(e.g., peripheral component interconnect (PCI) bus, PCI-
Extended (PCI-X), PCIE (PCI Express) bus, gigabit Ether-
net (GBE) bus, universal serial bus (USB)). Various types of
peripheral devices can be coupled to I/O interfaces 120.
Such peripheral devices include (but are not limited to)
displays, keyboards, mice, printers, scanners, joysticks or
other types of game controllers, media recording devices,
external storage devices, network interface cards, and so
forth.

In various implementations, computing system 100 is a
computer, laptop, mobile device, game console, server,
streaming device, wearable device, or any of various other
types of computing systems or devices. It is noted that the
number of components of computing system 100 varies
from implementation to implementation. For example, in
other implementations, there are more or fewer of each
component than the number shown in FIG. 1. It is also noted
that in other implementations, computing system 100
includes other components not shown in FIG. 1. Addition-
ally, in other implementations, computing system 100 is
structured in other ways than shown in FIG. 1.

Turning now to FIG. 2, a block diagram of another
implementation of a computing system 200 is shown. In one
implementation, system 200 includes GPU 205, system
memory 225, and local memory 230. In one implementation,
neural network 105 (of FIG. 1) executes on GPU 205.
System 200 also includes other components which are not
shown to avoid obscuring the figure. GPU 205 includes at
least command processor 235, control logic 240, dispatch
unit 250, compute units 255A-N, memory controller 220,
global data share 270, level one (L1) cache 265, and level
two (L2) cache 260. In other implementations, GPU 205
includes other components, omits one or more of the illus-
trated components, has multiple instances of a component
even if only one instance is shown in FIG. 2, and/or is
organized in other suitable manners.

In wvarious implementations, computing system 200
executes any of various types of software applications. As
part of executing a given software application, a host CPU
(not shown) of computing system 200 launches kernels to be
performed on GPU 205. Command processor 235 receives
kernels from the host CPU and uses dispatch unit 250 to
dispatch kernels to compute units 255A-N. Control logic
240 monitors the various resources of GPU 205 and helps

US 11,663,001 B2

5

dispatch unit 250 determine how to dispatch wavefronts to
compute units 255A-N. Threads within kernels executing on
compute units 255A-N read and write data to global data
share 270, L1 cache 265, and L2 cache 260 within GPU 205.
Although not shown in FIG. 2, in one implementation,
compute units 255A-N also include one or more caches
and/or local memories within each compute unit 255A-N.

Referring now to FIG. 3, a block diagram of one imple-
mentation of compute unit logic 300 is shown. In one
implementation, compute unit logic 300 is included in each
of compute units 255A-N (of FIG. 2). In one implementa-
tion, logic 300 includes lossy sparse load unit (LSLU) 305,
memory 310, vector general purpose register (VGPR) 315,
single instruction, multiple data (SIMD) units 320, and
scheduler 325. It is noted that LSLU 305 can also be referred
to herein as a “load unit”. It is further noted that SIMD units
320 can also be referred to herein as “processing elements”.
In one implementation, logic 300 is included within a
graphics processing unit (GPU). In another implementation,
logic 300 is included within a field programmable gate array
(FPGA). In a further implementation, logic 300 is included
within an application specific integrated circuit (ASIC). In
other implementations, logic 300 is included within other
types of processing units, computing devices, and/or com-
puting systems. It is noted that logic 300 can also be referred
to herein as “control logic”.

In one implementation, LSL.U 305 loads operands from
memory 310 to VGPR 315 and then determines how many
non-zero values are in the input vector operands. In another
implementation, LSLU 305 determines how many non-zero
values are in input vector operands before loading the input
vector operands from memory 310 to VGPR 315. It is noted
that in one implementation, the term “non-zero value” is
defined as a value which is not equal to zero. In another
implementation, the term “non-zero value” is defined as a
value that is greater than a threshold value or with an
absolute value greater than a threshold value. For example,
in one implementation, the threshold value is a small posi-
tive value (e.g., 0.1) which is programmable. In some
implementations, LSLU 305 will not load a given vector
operand from memory 310 to VGPR 315 if the number of
non-zero values in the given input vector operand is less than
a threshold number. This threshold number is shown as
mask/thres 306 in LSL.U 305. The comparison logic used to
compare the number of non-zero values to the threshold
number is shown as comparator 307 in LSLU 305. In other
implementations, LSLU 305 will load a given input vector
operand from memory 310 to VGPR 315 or buffer 308 even
if the number of non-zero values in the given input vector
operand is less than the threshold number, but then LSLU
305 will discard, invalidate, and/or overwrite the given input
vector operand in VGPR 315 if the number of non-zero
values in the given input vector operand is less than the
threshold number.

Also shown in logic 300 is scheduler 325 which issues
instructions for execution on SIMD units 320. In one imple-
mentation, SIMD units 320 perform a matrix multiplication
on the input vector operands of instructions issued for
execution by scheduler 325. The matrix multiplication can
be an inner product or outer product matrix multiplication,
depending on the type of instruction being executed. In other
implementations, SIMD units 320 perform other types of
operations on the input vector operands of instructions
issued for execution by scheduler 325. In one implementa-
tion, if LSLU 305 determines that the input vector operand
(s) for a given instruction have less than a threshold number
of non-zero values, then scheduler 325 does not schedule the

40

45

50

6

given instruction on SIMD units 320. Rather, schedule 325
will move on to the next instruction. By skipping instruc-
tions with less than the threshold number of non-zero values,
the efficiency of neural network implementations on SIMD
units 320 is improved.

Turning now to FIG. 4, one implementation of a method
400 for executing a vector lossy combined sparse load
instruction is shown. For purposes of discussion, the steps in
this implementation and those of FIG. 5-9 are shown in
sequential order. However, it is noted that in various imple-
mentations of the described methods, one or more of the
elements described are performed concurrently, in a differ-
ent order than shown, or are omitted entirely. Other addi-
tional elements are also performed as desired. Any of the
various systems or apparatuses described herein are config-
ured to implement method 400.

A lossy sparse load unit (LSLU) loads both A and B input
vector operands as well as a current index into a dataset and
a maximum index for the dataset (block 405). Next, the
LSLU determines the number of non-zero values in each of
the A and B input vector operands (block 410). Then, if the
number of non-zero values in each input vector operand is
less than a threshold and the current index into the dataset is
less than the maximum index (conditional block 415, “yes”
leg), then the LSLU increments the pointer to the addresses
of the input vector operands by a stride and the LSLU
increments the current dataset index (block 420). After block
420, method 400 returns to block 410. If the number of
non-zero values in either input vector operand is greater than
or equal to the threshold or if the current index into the
dataset is equal to the maximum index (conditional block
415, “no” leg), then the LSLU returns values to the input
vector operand A and B values in the vector register file
(block 425). After block 425, method 400 ends. In one
implementation, the vector lossy combined sparse load
instruction is targeted toward the simplest inner product and
outer product implementations with block size of one that
iteratively load one operand each for A and B before
performing a multiply-accumulate (MAC) operation on the
operands.

Referring now to FIG. 5, one implementation of a method
500 for executing a vector lossy single sparse load instruc-
tion is shown. A LSLU receives a load instruction for an
input vector operand for a specified address, an operand
identifier (ID), and an N value, with the N value specifying
a total number of input vector operands (block 505). Next,
the LSLU sets an “1” variable equal to 0 (block 510), and
then the LSLU checks if the “i”” variable is less than the total
number of threads of a wavefront (conditional block 515). If
the “i” variable is less than the total number of threads
(conditional block 515, “yes” leg), then the LSLU loads the
input vector operand from memory into the vector register
file and the LSLU counts the number of non-zero values in
the input vector operand and stores the number in an
“accNZCount” array (block 520). Next, the LSLU incre-
ments the “1” variable (block 525), and then method 500
returns to conditional block 515. If the “1” variable is equal
to the number of threads (conditional block 515, “no” leg),
then the LSLU returns the value of vector “v” (block 530).
After block 530, method 500 ends. One implementation for
processing the “accNZCount™ array is described below in
the discussion associated with FIG. 6.

Turning now to FIG. 6, one implementation of a method
600 for processing an accumulated non-zero count (i.e.,
accNZCount) array is shown. In one implementation,
method 600 is executed after the execution of the vector
lossy single sparse load instruction described in method 500.

US 11,663,001 B2

7

The LSLU receives the accNZCount array (block 605).
Next, an “i”” variable is initialized to zero (block 610). Then,
the LSLU determines if the “i” variable is less than the total
number of threads of a wavefront (conditional block 615).

If the “i” variable is less than the total number of threads
of the wavefront (conditional block 615, “yes” leg), then the
LSLU determines if the number of non-zero values in each
of the two input operands is less than a threshold (i.e.,
NZThres) (conditional block 620). If the non-zero count for
each of the two input operands is less than the threshold
(conditional block 620, “yes” leg), then a thread redundant
indicator is set to 1 for a current index “i” (block 625).
Otherwise, if the non-zero count for either of the two input
operands is greater than or equal to the threshold (condi-
tional block 620, “no” leg), then the thread redundant
indicator is set to O for the current index “i” (block 630).
After blocks 625 and 630, the current index “i” is incre-
mented (block 635), and then method 600 returns to condi-
tional block 615.

If the “1” variable is equal to the total number of threads
(conditional block 615, “no” leg), then the LSL.U determines
whether the entire wavefront is redundant by performing a
bitwise AND operation on a plurality of the thread redundant
indicators (block 640). Then the LSLU returns the redundant
wavefront value indicating if the entire wavefront is redun-
dant (block 645). After block 645, method 600 ends.

Referring now to FIG. 7, one implementation of a method
700 for executing a vector lossy sparse load and skip
instruction is shown. The LSLU detects a vector lossy sparse
load and skip instruction in the program code and retrieves
the different encoded fields of the instruction (block 705). In
one implementation, the encoded fields include the address,
N (the total number of input vector operands), r_offsetl,
r_offset2, and r_base, which are used to calculate the redun-
dant indices for a given zero value. In other implementa-
tions, the vector lossy sparse load and skip instruction
includes other numbers and/or types of encoded fields.

Next, the LSLU sets an “i” variable equal to zero (block
710). Then, the LSLU determines if the “1” variable is less
than the value of “N” (conditional block 715). If the “9”
variable is less than the value of “N” (conditional block 715,
“yes” leg), then the LSLU loads the next group of values
from the dataset from memory into the vector register file
and then generates a count of the number of non-zero values
in the loaded group of values (block 720). This number of
non-zero values is represented by “NZCount[i]” in FIG. 7.

If the number of non-zero values is less than a threshold
(i.e., NZThres) (conditional block 725, “yes” leg), then the
LSLU generate redundant multiply-accumulate (MAC) indi-
ces (i.e., ridx) and writes the redundant MAC indices to a
skip queue (block 730). After block 730, the LSLU incre-
ments the “i” variable (block 735) and then method 700
returns to conditional block 715. If the number of non-zero
values is greater than or equal to the threshold (conditional
block 725, “no” leg), then the LSLU increments the “i”
variable (block 735) and then method 700 returns to condi-
tional block 715. If the “1” variable is equal to the value of
“N” (conditional block 715, “no” leg), then the LSLU
returns the group of values “v” (block 740). After block 740,
method 700 ends. It is noted that the scheduler queries the
skip queue before issuing an instruction for execution to the
SIMD units, and if an index for the instruction is stored in
the skip queue, then the scheduler moves on to the next
instruction.

Turning now to FIG. 8, one implementation of a method
800 for executing a lossy sparse load instruction is shown.
A lossy sparse load unit receives a lossy sparse load instruc-

10

15

20

25

30

35

40

45

50

55

60

65

8

tion for execution (block 805). The lossy sparse load unit
determines how many non-zero values are included in one or
more input vector operands of the received lossy sparse load
instruction (block 810). If the number of non-zero values is
less than a threshold (conditional block 815, “yes” leg), then
the lossy sparse load unit prevents the instruction for the one
or more input vector operands from being issued for execu-
tion (block 820). In other words, the lossy sparse load unit
causes processing of the one or more input vector operands
to be skipped in block 820. In one implementation, the
threshold is user-configurable. In one implementation, a user
sets the threshold based on a tolerance for error in the
underlying neural network. If the number of non-zero values
is greater than or equal to the threshold (conditional block
815, “no” leg), then the lossy sparse load unit causes the
instruction for the one or more input vector operands to be
issued for execution (block 825). After blocks 820 and 825,
method 800 ends. It is noted that method 800 is repeated for
each lossy sparse load instruction received by the lossy
sparse load unit.

Referring now to FIG. 9, one implementation of a method
900 for implementing a neural network is shown. A com-
puting system receives program code to implement a neural
network (block 905). The program code includes a plurality
of instructions for implementing the neural network. In one
implementation, the computing system includes a plurality
of compute units, with each compute unit including a lossy
sparse load unit.

The system executes one or more first instructions from
the program code on a plurality of compute units (block
910). Also, the system skips execution of one or more
second instructions from the program code on the plurality
of compute units (block 915). The system implements the
neural network by executing the one or more first instruc-
tions and skipping execution of the one or more second
instructions (block 920).

Then, the system uses the neural network to generate a
classification of a first dataset (block 925). After block 925,
method 900 ends. In one implementation, the first dataset is
an image, and the classification identifies a given category to
which the image belongs. In another implementation, the
first dataset is a video, and the classification assigns the
video to a given category. In other implementations, the first
dataset includes other types of data. It is noted that method
900 can be implemented multiple times to generate classi-
fications of any number of datasets.

Turning now to FIG. 10, examples of pseudocode for
implementing inner product and outer product matrix mul-
tiplication operations are shown. There are a wide variety of
general matrix multiplication (GEMM) routines for realiz-
ing dense matrix multiplications on GPUs and other types of
processing units. The optimal routine in a given scenario is
determined by the size of operand matrices, size of local and
global memories as well as the available accelerator features
for computation and compression. GEMM algorithms can
broadly be differentiated based on whether they utilize
inner-products or outer-products. Pseudocode 1005 is shown
at the top of FIG. 10 as one example for implementing an
inner product matrix multiplication operation. The
matrixMul function performs a dense matrix multiplication
between a MxK matrix A and a KxP matrix B to yield a MxP
matrix C. It is assumed for the purposes of pseudocode 1005
that matrix A is stored in a row major format and matrix B
is stored in a column major format. The matrixMul function
repeatedly calls the innerProd function to calculate each
element C[i][j] by performing an inner product between the
i row of A and the j” column of B. In an DNN implemen-

US 11,663,001 B2

9

tation, matrix A corresponds to output activations of a
previous layer, matrix B corresponds to weights of the
current layer, and matrix C corresponds to output activations
of the current layer.

Pseudocode 1010 is shown at the bottom of FIG. 10 as one
example for implementing an outer product matrix multi-
plication operation. The matrixMul function repeatedly calls
the outerProd function to calculate a block of NxN values in
matrix C. The outerProd function derives its name from the
fact that it sums up the outer products between the N sized
columns in A[i:i4+N][:] and N sized rows in B[:][j:j+N].
Sparsity in matrices A and B causes the multiply-accumulate
(MAC) operations performed in the innerProd and outerProd
functions to become redundant. Both these functions are
typically parallelized in GPUs per SIMD unit. Simply mask-
ing off individual threads with redundant MACs in a SIMD
unit would give power and energy savings, but execution
time savings require an entire redundant wavefront to be
skipped. Accordingly, in one implementation, an entire
wavefront is eliminated if all the threads of the wavefront
load zero operand values from either A or B. In another
implementation, the resiliency of DNN applications is
exploited to increase the chances of encountering redundant
wavefronts by identifying a wavefront to be redundant if
most, but not all, values loaded by the threads are zeros. In
one implementation, the number of values that need to be
zero for the wavefront to be characterized as redundant is
user-configurable. In this implementation, the final applica-
tion dictates the number of non-zeros (i.e., amount of
lossiness) that can be sustained with acceptable degradation
in the result.

Referring now to FIG. 11, an example of pseudocode
1105 for implementing a vector lossy combined sparse load
instruction is shown. Pseudocode 1105 is shown as one
example for implementing an inner product matrix multi-
plication using a vector lossy combined sparse load (or
V_LCSLD) instruction. In other implementations, pseudo-
code 1105 can include other types and/or arrangements of
instructions. In one implementation, the V_LCSLD instruc-
tion is primarily targeted toward the simplest inner product
and outer product implementations with block size of 1 that
iteratively load one operand each for matrices A and B
before performing a MAC operation on the operands. The
V_LCSLD instruction operates by reading both operands
from memory in a combined form and returning values to
the vector register file (VGPR) only when the number of
non-zeros in each of the operands exceeds the provided
lossy threshold (thres). The V_LCSLD instruction automati-
cally proceeds to the operand loads for the next MAC if the
current loads return zero values in most of the threads.

In one implementation, the innerProd function repeatedly
calls the V_LCSLD function to load the vA and vB values
before performing a MAC operation on the vA and vB
values. The V_LCSLD function loads the operands A and B
for all threads in a wavefront into vectors vA and vB
respectively. Next, the V_L.CSLD function counts the num-
ber of non-zero values in vA and vB. If the termination
condition for the loop is not met (i.e., the number of
non-zeros is within NZThres and the current loop index is
less than the maxIdx), the V_LCSLD function loads the next
operand values and increments the index (i.e., idx). On
termination, the current values of vA and vB are returned
along with the current idx value to ensure correct execution
of the final innerProd function.

Turning now to FIG. 12, a block diagram of one imple-
mentation of logic 1200 for implementing a vector lossy
combined sparse load instruction. In one implementation,

25

30

40

45

55

10

logic 1200 includes at least cache 1205, zero checking logic
1210, next address generator 1215, and non-zero value
counting logic 1220 and 1225 for input vector operands A
and B, respectively. The number of non-zero values in the
vector A and B operands are counted by logic 1220 and
1225, respectively. The number of non-zero values is com-
pared to a threshold for the A and B operands, and the
outputs of the comparisons are fed to an OR-gate. The output
of the OR-gate is an “IsRedundant” signal which indicates
if the input vector operands are redundant. In other imple-
mentations, logic 1200 can include other components and/or
be organized in other suitable manners.

Referring now to FIG. 13, an example of pseudocode
1305 for implementing a vector lossy single sparse load
instruction is shown. Pseudocode 1305 is shown as one
example for implementing an outer product matrix multi-
plication using a vector lossy single sparse load (or
V_LSSLD) instruction. In other implementations, pseudo-
code 1305 can include other types and/or arrangements of
instructions. The V_L.SSLD instruction targets outer product
implementations with a block size N>1. The V_LSSLD
instruction successfully skips a block of redundant MACs
following a block of multiple operand loads. The V_LSSLD
instruction counts the number of zeros among the values
loaded into the VGPR and accumulates the count across the
entire block of loads for an operand. A S_7_
CHECK_BRANCH instruction at the end of the loads
compares the accumulated value with the provided lossy
threshold. The comparison determines if the execution flows
into the MACs or moves on to the next block of loads if the
current block of MACs is redundant. The array accNZCount
accumulates the number of non-zeros encountered for each
of the operands loaded by different threads in the block of
loads.

Turning now to FIG. 14, an example of pseudocode 1405
for implementing a vector lossy sparse load and skip instruc-
tion is shown. Pseudocode 1405 is shown as one example for
implementing an outer product matrix multiplication using a
vector lossy sparse load and skip (or V_LSLS) instruction.
In other implementations, pseudocode 1405 can include
other types and/or arrangements of instructions. The
V_LSLS instruction is targeted toward blocked outer prod-
uct implementations operating on matrices with scattered
sparsity. The V_LSLS instruction allows the GPU to skip
individual redundant MACs (at the wavefront level) in a
block of MACs following a block of operand loads. The
V_LSLS instruction writes to a skipQueue that has a list of
redundant MAC indices. The head of the skipQueue is read
by the scheduler before fetching or dispatching an instruc-
tion to check if the current instruction is redundant. If the
current instruction is redundant, the scheduler moves on to
fetch and dispatch the next instruction after removing the
current instruction from the queue. Otherwise, the current
instructed is executed normally.

In one implementation, the V_LSLS instruction counts
the number of non-zeros in the values loaded into VGPRs.
The V_LSLS instruction determines which instructions
become redundant whenever the number of non-zeros in the
loaded vector is less than a threshold. This determination is
transferred to the skipQueue. The arguments r_size, r_off-
setl, r_offset2 and r_base of the v_Isls instruction allow the
V_LSLS instruction to automatically generate the program
counter offsets of the redundant MACs to store in the
skipQueue. In one implementation, the arguments r_size,
r_offsetl, r_offset2 and r_base are programmed by a com-
piler based on the structure of the GEMM code. In one
implementation, the skipQueue is implemented in the buf-
fers of the LSLU. The size of the skipQueue determines the

US 11,663,001 B2

11

maximum number of MACs that can be skipped. Accord-
ingly, in one implementation, the skipQueue is sized to
accommodate the maximum block size expected to be
encountered in an outer product implementation.

In one implementation, a DNN utilizes low precision
operands. Utilizing low precision operands allows the
threads in a wavefront to load more operand values and
perform more MACs in a single instruction. For example,
reducing precision to 8 bits from 32 bits can allow a thread
to load four times as many matrix values per load instruction
and operate on four of these values instead of a single value
per MAC instruction. In the case where all values are
required to be zero, the MAC becomes redundant if and only
if all low precision values operated by it have zeros but the
probability of encountering such a case can be quite low.
Accordingly, in one implementation, a new threshold “intra-
MAC?” is introduced to determine whether a value of a MAC
operation is characterized as redundant. The new threshold
“intraMAC” allows some lossiness to exist within a single
MAC instruction of each thread and the MAC instruction
can be skipped if the number of low precision non-zero
values is less than intraMAC. The family of sparse load
instructions introduced herein can be easily extended to
reduced precision implementations.

In various implementations, program instructions of a
software application are used to implement the methods
and/or mechanisms described herein. For example, program
instructions executable by a general or special purpose
processor are contemplated. In various implementations,
such program instructions are represented by a high level
programming language. In other implementations, the pro-
gram instructions are compiled from a high level program-
ming language to a binary, intermediate, or other form.
Alternatively, program instructions are written that describe
the behavior or design of hardware. Such program instruc-
tions are represented by a high-level programming language,
such as C. Alternatively, a hardware design language (HDL)
such as Verilog is used. In various implementations, the
program instructions are stored on any of a variety of
non-transitory computer readable storage mediums. The
storage medium is accessible by a computing system during
use to provide the program instructions to the computing
system for program execution. Generally speaking, such a
computing system includes at least one or more memories
and one or more processors configured to execute program
instructions.

It should be emphasized that the above-described imple-
mentations are only non-limiting examples of implementa-
tions. Numerous variations and modifications will become
apparent to those skilled in the art once the above disclosure
is fully appreciated. It is intended that the following claims
be interpreted to embrace all such variations and modifica-
tions.

What is claimed is:

1. A system comprising:

a plurality of processing elements; and

control logic;

wherein the control logic is configured to:

load a plurality of input vector operands from a
memory;

provide the plurality of input vector operands to a
vector register file only when a number of non-zero
values in the plurality of input vector operands is
greater than or equal to a first threshold; and

responsive to the number of non-zero values in the
plurality of input vector operands being greater than
or equal to the first threshold, cause the plurality of

25

30

35

40

45

55

60

12

input vector operands to be processed by the plural-
ity of processing elements.

2. The system as recited in claim 1, wherein the system is
configured to reduce at least one of power consumption and
execution time when implementing a neural network by
skipping processing associated with the plurality of input
vector operands for one or more layers of the neural net-
work.

3. The system as recited in claim 2, wherein a non-zero
value is an absolute value which is greater than a second
threshold.

4. The system as recited in claim 3, wherein the first
threshold and the second threshold are programmable based
on an error tolerance of a neural network.

5. The system as recited in claim 3, wherein the system is
configured to set the first threshold and the second threshold
to values which are based on an error tolerance of a neural
network.

6. The system as recited in claim 2, wherein the control
logic is further configured to store a program counter offset
of an instruction processing a given input vector operand in
a skip queue so that the instruction will not be executed,
responsive to determining that the number of non-zero
values in the given input vector operand is less than the first
threshold.

7. The system as recited in claim 1, wherein responsive to
the number of non-zero values being less than the first
threshold, the control logic is configured to cause processing
of the plurality of input vector operands to be skipped.

8. A method comprising:

loading a plurality of input vector operands from a

memory;

determining, by control logic coupled to a plurality of

processing elements, how many non-zero values are
included in the plurality of input vector operands; and

providing the plurality of input vector operands to a

vector register file only when a number of non-zero
values in the plurality of input vector operands is
greater than or equal to a first threshold.

9. The method as recited in claim 8, further comprising
reducing at least one of power consumption and execution
time when implementing a neural network by skipping
processing associated with the plurality of input vector
operands for one or more layers of the neural network.

10. The method as recited in claim 9, wherein a non-zero
value is an absolute value which is greater than a second
threshold.

11. The method as recited in claim 10, wherein the first
threshold and the second threshold are programmable based
on an error tolerance of a neural network.

12. The method as recited in claim 10, wherein responsive
to determining that the number of non-zero values is less
than the first threshold, the method comprises causing pro-
cessing of the plurality of input vector operands to be
skipped by the plurality of processing elements.

13. The method as recited in claim 9, further comprising
storing a program counter offset of an instruction processing
a given input vector operand in a skip queue responsive to
determining that the number of non-zero values in the given
input vector operand is less than the first threshold.

14. The method as recited in claim 8, further comprising
performing, by a plurality of processing elements, a matrix
multiplication operation to multiply a first set of input vector
operands by a second set of input vector operands.

US 11,663,001 B2

13

15. An apparatus comprising:

a plurality of processing elements;

a scheduler; and

a lossy sparse load unit;

wherein the lossy sparse load unit is configured to:

load a plurality of input vector operands from a
memory;

determine how many non-zero values are included in
the plurality of input vector operands; and

provide the plurality of input vector operands to a
vector register file only when a number of non-zero
values in the plurality of input vector operands is
greater than or equal to a first threshold.

16. The apparatus as recited in claim 15, wherein the
apparatus is configured to reduce at least one of power
consumption and execution time when implementing a
neural network by skipping processing associated with the
plurality of input vector operands for one or more layers of
the neural network.

5

14

17. The apparatus as recited in claim 16, wherein a
non-zero value is an absolute value which is greater than a
second threshold.

18. The apparatus as recited in claim 17, wherein the first
threshold and the second threshold are programmable based
on an error tolerance of a neural network.

19. The apparatus as recited in claim 17, wherein the
apparatus is configured to set the first threshold and the
second threshold to values which are based on an error
tolerance of a neural network.

20. The apparatus as recited in claim 15, wherein the
processing performed by the plurality of processing ele-
ments comprises a matrix multiplication operation to mul-
tiply a first set of input vector operands by a second set of
input vector operands.

#* #* #* #* #*

