a2 United States Patent

Greathouse et al.

US011604737B1

US 11,604,737 B1
Mar. 14, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(1)

(52)

(58)

DYNAMIC MODIFICATION OF COHERENT
ATOMIC MEMORY OPERATIONS

Applicant: ADVANCED MICRO DEVICES,
INC., Santa Clara, CA (US)

Inventors: Joseph L. Greathouse, Austin, TX
(US); Steven Tony Tye, Boxborough,
MA (US); Mark Fowler, Boxborough,
MA (US); Milind N. Nemlekar, San
Diego, CA (US)

Assignee: Advanced Micro Devices, Inc., Santa
Clara, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 17/516,860

Filed: Nov. 2, 2021

Int. CL

GOG6F 12/00 (2006.01)

GOG6F 12/0891 (2016.01)

GOG6F 12/0831 (2016.01)

GOG6F 9/448 (2018.01)

GOG6F 9/30 (2018.01)

GOG6F 12/0888 (2016.01)

U.S. CL

CPC ... GO6F 12/0891 (2013.01); GOGF 9/30047

(2013.01); GO6F 9/4498 (2018.02); GO6F
12/0831 (2013.01); GOGF 12/0888 (2013.01)
Field of Classification Search
CPC GOG6F 12/0891; GO6F 12/0831; GOGF
12/0888; GOGF 9/4498; GOGF 9/30047
See application file for complete search history.

COHERENCY tOOKUP
TABLES

224

(56) References Cited
U.S. PATENT DOCUMENTS
2015/0347196 Al* 12/2015 Truong GOGF 9/528

718/107

OTHER PUBLICATIONS

P. Nair, V. Sridharan, M. Qureshi, “XED: Exposing On-Die Error
Detection Information for Strong Memory Reliability”, ISCA 2016.
H. Jeon, G. Loh, M. Annavaram, “Efficient RAS Support for 3D
Die-Stacked DRAM”, IEEE International Test Conference, 2014.
S. Gurumurthi, K. Lee, M. Jang, V. Sridharan, A. Nygren, Y. Ryu,
K. Sohn, T. Kim, and H. Chung, HBM3 Ras: Enhancing Resilience
at Scale, IEEE Computer Architecture Letters, 2021.

High Bandwidth Memory DRAM (HBM3) Standard, JESD238,
Jedec Solid State Technology Association, Jan. 2022.

* cited by examiner
Primary Examiner — Gurtej Bansal

(57) ABSTRACT

A processing device determines a scope indicating at least a
portion of the processing system and target data from atomic
memory operation to be performed. Based on the scope, the
processing device determines one or more hardware param-
eters for at least a portion of the processing system. The
processing device then compares the hardware parameters to
the scope and target data to determine one or more correc-
tions. The processing device then provides the scope, target
data, hardware parameters, and corrections to a plurality of
hardware lookup tables. The hardware lookup tables are
configured to receive the scope, target data, hardware
parameters, and corrections as inputs and output values
indicating one or more coherency actions and one or more
orderings. The processing device then executes one or more
of the indicated coherency actions and the atomic memory
operation based on the indicated ordering.

20 Claims, 4 Drawing Sheets

PROCESSING DEVICE 200

CORE
2301

CORE
2302

ATOMIC MEMORY
OPERATIONS
226

CACHES 234

CORE
230-N .

4
.

232

ATOMICITY ENGINE

CACHE L1
236-2
CACHELO
236-1

CACHES
238-1

CACHES ACHES
238-2 238-3

US 11,604,737 B1

Sheet 1 of 4

Mar. 14, 2023

U.S. Patent

Zch

8l

T "Old

o o o
0z INIONT O/l
viT Ndo
ciisnd
o 80T
907 AHON3N 707 NdD
AT 4

US 11,604,737 B1

Sheet 2 of 4

Mar. 14, 2023

U.S. Patent

¢ "OId

H T8ee Q 78eC w H 18
SIHOVO SIHOVD SIHOVD
21z snd
T-G6¢C -
013HOVO [4%4
ANIONI ALIDINOLY
796 w
171 IHOVD 144
. —] SNOILYY3dO
. ALOWIANW DINOLY
. NOEC o o o Z0eT 1067
N-OEC 3400 =18[010) 3400
N13IHOVD ,
72 STHOYO 002 30IA3A ONISSID0Hd
(744
s3avL
dNYO0T AONTHIHOD

US 11,604,737 B1

Sheet 3 of 4

Mar. 14, 2023

U.S. Patent

€ OIld

{743

05¢

SNOILOV AONFH3HOO

SERSLAR
dNXOOT AONIHFHOO

e
ANIONT AONZHIHOO

=
SYALINVEY
SNOILOTHHOO _ — JOVMANYH
- [
INIONT YTV
INIONT NOILOFHHOD JaYMOdYH

[433
ANIONT ALIDINOLY

U.S. Patent Mar. 14, 2023 Sheet 4 of 4 US 11,604,737 B1

A 400

DETERMINE ONE OR MORE SCOPES AND TARGET DATA
FROM RECEIVED ATOMIC MEMORY OPERATIONS

l

DETERMINE ONE OR MORE HARDWARE PARAMETERS

405

410

DETERMINE ONE OR MORE CORRECTIONS 415

DY

DETERMINE ONE OR MORE COHERENCY ACTIONS
BASED ON SCOPES, TARGET DATA, HARDWARE
PARAMETERS, AND CORRECTIONS

420

—

EXECUTE COHERENCY ACTIONS 425

—

PERFORM ATOMIC MEMORY OPERATIONS 430

—

FIG. 4

US 11,604,737 B1

1
DYNAMIC MODIFICATION OF COHERENT
ATOMIC MEMORY OPERATIONS

BACKGROUND

Within processing systems including multiple processing
devices, atomic memory operations are useful in some
situations to reduce errors or provide additional memory
security. To enforce the atomicity of an atomic memory
operation, coherency across a scope indicated by the atomic
memory operation is maintained using certain coherency
operations performed within the processing system. Such
coherency operations are determined by the compiler which
does not provide the flexibility to update the coherency
operations as hardware conditions change. Based on this,
atomic memory operations determined by the compiler may
specify scopes that are device-specific, further limiting their
flexibility. The device-specific nature of the scope of the
atomic memory operations leads to increased system
resources as atomic memory operations must be compiled
for each hardware configuration and a new atomic memory
operation must be compiled each time the hardware con-
figuration changes.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure may be better understood, and its
numerous features and advantages made apparent to those
skilled in the art by referencing the accompanying drawings.
The use of the same reference symbols in different drawings
indicates similar or identical items.

FIG. 1 is a block diagram of a processing system for
hardware-agnostic atomicity, in accordance with some
embodiments.

FIG. 2 is a block diagram of a processing device config-
ured to generate one or more coherency actions based on
atomic memory operations to be performed, in accordance
with some embodiments.

FIG. 3 is a block diagram of an atomicity engine config-
ured to generate one or more coherency actions, in accor-
dance with some embodiments.

FIG. 4 is a flow diagram illustrating a method for per-
forming a hardware-agnostic atomic memory operation, in
accordance with some embodiments.

DETAILED DESCRIPTION

Techniques and systems described herein address provid-
ing device-agnostic atomic memory operations in a process-
ing system through determining coherency actions at one or
more processing devices of the processing system. Such
coherency actions include coherency and fencing operations
that help ensure the atomicity and coherency of the atomic
memory operations when they are performed by the pro-
cessing system. To determine the coherency actions, a
processing device determines a scope indicating at least a
portion of the processing system and target data from an
atomic memory operation to be performed. Based on the
scope, the processing device determines one or more hard-
ware parameters for at least a portion of the processing
system. For example, one or more operating modes of
processing devices within a portion of the processing system
identified by the scope are determined. The processing
device then compares the hardware parameters to the scope
and target data to determine one or more corrections. For
example, the processing device compares the hardware
parameters to the scope and target data to determine if the

10

15

20

25

30

35

40

45

50

55

60

65

2

scope or target data need to be updated. In this way, the
scope, target data, and resulting coherency actions can be
dynamically updated during a runtime of the processor
based on the hardware parameters.

The processing device then provides the scope, target
data, hardware parameters, and corrections to a plurality of
hardware lookup tables. The hardware lookup tables are
configured to receive the scope, target data, hardware
parameters, and corrections as inputs and output values
indicating one or more coherency actions and one or more
orderings for performing the indicated coherency actions
and the atomic memory operations. Based on the orderings
indicated the hardware lookup tables, the processing device
executes one or more of the indicated coherency actions and
atomic memory operations. In this way, the atomic memory
operations are device-agnostic as the coherency actions are
determined at the processing device rather than a compiler.
As such, the generation of the atomic memory operations
requires fewer system resources, increasing the efficiency of
the processing system. Additionally, the atomic memory
operations are more flexible as they can be run on multiple
devices.

FIG. 1 is a block diagram of a processing system 100 for
hardware-agnostic atomicity, according to some embodi-
ments. The processing system 100 includes or has access to
a memory 106 or other storage component implemented
using a non-transitory computer-readable medium, for
example, a dynamic random access memory (DRAM).
However, in embodiments, the memory 106 is implemented
using other types of memory including, for example, static
random access memory (SRAM), nonvolatile RAM, and the
like. According to embodiments, the memory 106 includes
an external memory implemented external to the processing
units implemented in the processing system 100. The pro-
cessing system 100 also includes a bus 112 to support
communication between entities implemented in the pro-
cessing system 100, such as the memory 106. Some embodi-
ments of the processing system 100 include other buses,
bridges, switches, routers, and the like, which are not shown
in FIG. 1 in the interest of clarity.

The techniques described herein are, in different embodi-
ments, employed at any of a variety of parallel processors
(e.g., vector processors, graphics processing units (GPUs),
general-purpose GPUs (GPGPUs), non-scalar processors,
highly-parallel processors, artificial intelligence (Al) pro-
cessors, inference engines, machine learning processors,
other multithreaded processing units, and the like), scalar
processors, serial processors, or any combination thereof.
FIG. 1 illustrates an example of a parallel processor and in
particular a graphics processing unit (GPU) 114, in accor-
dance with some embodiments. The GPU 114 renders
images for presentation on a display 120. For example, the
GPU 114 renders objects to produce values of pixels that are
provided to the display 120, which uses the pixel values to
display an image that represents the rendered objects. The
GPU 114 implements a plurality of processor cores 116-1 to
116-N that execute instructions concurrently or in parallel.
According to embodiments, one or more processor cores 116
operate as SIMD units that perform the same operation on
different data sets. Though in the example embodiment
illustrated in FIG. 1, three cores (116-1, 116-2, 116-N) are
presented representing an N number of cores, the number of
processor cores 116 implemented in the GPU 114 is a matter
of design choice. As such, in other embodiments, the GPU
114 can include any number of cores 116. Some embodi-
ments of the GPU 114 are used for general-purpose com-
puting. The GPU 114 executes instructions such as program

US 11,604,737 B1

3

code 108 stored in the memory 106 and the GPU 114 stores
information in the memory 106 such as the results of the
executed instructions.

The processing system 100 also includes a central pro-
cessing unit (CPU) 102 that is connected to the bus 112 and
therefore communicates with the GPU 114 and the memory
106 via the bus 112. The CPU 102 implements a plurality of
processor cores 104-1 to 104-N that execute instructions
concurrently or in parallel. In embodiments, one or more of
the processor cores 104 operate as SIMD units that perform
the same operation on different data sets. Though in the
example embodiment illustrated in FIG. 1, three cores
(104-1, 104-2, 104-M) are presented representing an M
number of cores, the number of processor cores 104 imple-
mented in the CPU 102 is a matter of design choice. As such,
in other embodiments, the CPU 102 can include any number
of cores 104. In some embodiments, the CPU 102 and GPU
114 have an equal number of cores 104, 116 while in other
embodiments, the CPU 102 and GPU 114 have a different
number of cores 104, 116. The processor cores 104 execute
instructions such as program code 110 stored in the memory
106 and the CPU 102 stores information in the memory 106
such as the results of the executed instructions. The CPU 102
is also able to initiate graphics processing by issuing draw
calls to the GPU 114. In embodiments, the CPU 102
implements multiple processor cores (not shown in FIG. 1 in
the interest of clarity) that execute instructions concurrently
or in parallel.

An input/output (I/0) engine 118 includes hardware and
software to handle input or output operations associated with
the display 120, as well as other elements of the processing
system 100 such as keyboards, mice, printers, external disks,
and the like. The I/O engine 118 is coupled to the bus 112
so that the I/O engine 118 communicates with the memory
106, the GPU 114, or the CPU 102. In the illustrated
embodiment, the I/O engine 118 reads information stored on
an external storage component 122, which is implemented
using a non-transitory computer-readable medium such as a
compact disk (CD), a digital video disc (DVD), and the like.
The 1/0 engine 118 is also able to write information to the
external storage component 122, such as the results of
processing by the GPU 114 or the CPU 102.

According to embodiments, the GPU 114, CPU 102, or
both can receive, perform, create, execute, or any combina-
tion thereof instructions causing one or more atomic
memory operations to be performed, for example, via bus
112. That is to say, GPU 114, CPU 102, or both can receive,
perform, create, execute, or any combination thereof instruc-
tions requiring, requesting, or indicating one or more atomic
memory operations to be performed. For example, one or
more cores of GPU 114, CPU 102, or both create instruc-
tions that require one or more atomic memory operations to
be performed. An “atomic memory operation,” as used
herein, includes signals indicating that one or more lockless,
concurrent operations are to be executed on target data
within the system 100. Such operations include, for
example, atomic stores, atomic exchanges, atomic loads, and
atomic fetches, to name a few. In embodiments, each atomic
memory operation identifies one or more scopes. A “scope,”
as used herein, includes parameters indicating two or more
heterogeneous structures across which the atomic memory
operation is atomic (i.e., coherent with). In other words, a
scope includes parameters indicating two or more systems,
portions of a system, devices (e.g., CPUs, GPUs, accelerated
processing units (APUs), field-programmable gate arrays
(FPGAs)), portions of a device (e.g., cores), or memory
structures (e.g., cache hierarchies, caches, data fabrics)

10

15

20

25

30

35

40

45

50

55

60

65

4

across which the atomic memory operation will be coherent.
For example, a scope includes parameters indicating cores of
a CPU and cores of a GPU across which an atomic memory
operation will be coherent. As another example, a scope
includes parameters indicating a CPU and a GPU across
which an atomic memory operation will be coherent. In
embodiments, the target data (e.g., location, cache, data
content) identified by the atomic memory operation includes
the location (e.g., memory, cache), data type, content, or any
combination thereof of the target data.

In embodiments, in response to causing an atomic
memory operation, the GPU 114, CPU 102, or both are
configured to determine one or more coherency actions
based on the atomic memory operations. A “coherency
action,” as used herein, includes one or more operations to
be performed by the GPU 114, CPU 102, or both that are
necessary for, assist in, or aid in ensuring the atomic memory
operation is coherent within the scope identified by the
atomic memory operation. Such operations include, for
example, updating state machines, flushing one or more
memory structures (e.g., caches, data fabrics), invalidating
one or more memory structures, bypassing one or more
memory structures, fencing one or more memory structures,
and fencing one or more threads, to name a few. According
to embodiments, the GPU 114, CPU 102, or both are
configured to determine one or more coherency actions
based on the scope identified by an atomic memory opera-
tion, the target data identified by an atomic memory opera-
tion, or both. In embodiments, the GPU 114, CPU 102, or
both determine coherency actions further based on one or
more hardware parameters of systems, portions of a system,
devices, portions of a device, memory structures, or any
combination thereof, indicated in the scope of an atomic
memory operation. Such hardware parameters include, for
example, operating modes (e.g., performance mode, power-
saving mode, two-core mode, four-core mode, split mode,
thread mode), addresses, connectivity (e.g., how devices are
connected, number of ports, available ports, communication
protocols), device architecture (e.g., number of cores),
device hierarchies, memory locations, and memory archi-
tectures, to name a few. According to embodiments, the
GPU 114, CPU 102, or both determine one or more correc-
tions based on the scope identified by the atomic memory
operation, the target data identified by the atomic memory
operation, and the hardware parameters. For example, the
GPU 114, CPU 102, or both determine one or more correc-
tions based on one or more discrepancies or incongruencies
between the scope identified by the atomic memory opera-
tion, the target data identified by the atomic memory opera-
tions, and the hardware parameters, for example, discrep-
ancies or incongruencies between operating modes, devices,
memory locations, and connectivity. As an example, GPU
114, CPU 102, or both determine an incongruency based on
a scope of an atomic memory operation that identifies a
device having eight cores and a hardware parameter indi-
cating that the device is operating as two four-core systems
according to its operating mode. From these determined
discrepancies and incongruencies the GPU 114, CPU 102, or
both determine one or more corrections to the scope iden-
tified by the atomic memory operation, the target data
identified by the atomic memory operation, the hardware
parameters, or any combination thereof.

By determining one or more coherency actions based on
the scope identified in an atomic memory operation, the
target data identified in an atomic memory operation, deter-
mined hardware parameters, determined corrections, or any
combination thereof, atomic memory operations within sys-

US 11,604,737 B1

5

tem 100 are device agnostic. That is to say, atomic memory
operations within system 100 can be executed by one or
more devices within system 100 each having different
hardware hierarchies, connectivities, architectures, operat-
ing modes, or any combination thereof. Because hardware
parameters, coherency actions, and corrections are deter-
mined at the hardware, the atomic memory operations in the
system 100 are not required to include this information,
making the atomic memory operations device agnostic.

Referring now to FIG. 2, a block diagram of a processing
device 200 configured to generate one or more coherency
actions based on atomic memory operations 226 to be
performed is presented. In other words, processing device
200 performs, creates, receives, or executes, instructions that
require, request, or indicate one or more atomic memory
operations 226 to be performed. In embodiments, the pro-
cessing device 200 implements aspects of processing system
100 as described in FIG. 1. For example, processing device
200 may be similar or the same as CPU 102, GPU 114, or
both as described in FIG. 1. Processing device 200 includes
or is connected to caches 234 including caches arranged in
cache levels LO-LN 236 in a cache hierarchy. Though the
example embodiment illustrated in FIG. 2 presents three
levels of caches (1.0 236-1, .1 236-2, LN 236-N) represent-
ing an N number of cache levels, in other embodiments, any
number of cache levels can be used. Additionally, processing
device 200 is connected by one or more busses to one or
more other caches 238 each including caches arranged in
multiple levels. Though the example embodiment illustrated
in FIG. 2 presents three other caches (238-1, 238-2, 238-3)
connected to processing device 200 by one bus 212, in other
embodiments processing device 200 can be connected to any
number of other caches 238 by any number of busses. In
embodiments, processing device 200 is connected to one or
more other processing devices by one or more busses, for
example, by bus 212.

According to embodiments, processing device 200
includes hardware and software to determine and perform
one or more coherency actions in response to receiving,
performing, creating, executing, or any combination thereof,
instructions causing one or more atomic memory operations
226 to be performed. In embodiments, processing device
200 includes atomicity engine 232 that includes hardware
and software configured to determine one or more hardware
parameters, corrections, and coherency actions in response
to processing device 200 causing one or more atomic
memory operations 226. According to embodiments, each
atomic memory operation 226 to be performed identifies one
or more scopes and target data. That is to say, each atomic
memory operation 226 identifies the two or more systems,
portions of a system, devices portions of a device, or
memory structures across which the atomic memory opera-
tion 226 and the identified target data will be coherent.
According to embodiments, one or more cores 230 of
processing device 200 each include a respective atomicity
engine 232.

In embodiments, based on the atomic memory operations
226 to be performed, atomicity engine 232 determines one
or more hardware parameters. For example, atomicity
engine 232 determines hardware parameters for one or more
devices indicated in the scope of an atomic memory opera-
tion. According to embodiments, atomicity engine 232 per-
forms one or more discovery operations related to the
portions of a system, devices, memories, memory hierar-
chies, or any combination thereof, indicated in the scope of
the atomic memory operation. The discovery operation
includes data requesting the hardware parameters of one or

20

25

40

45

6

more portions of a system, devices, memories, memory
hierarchies, or any combination thereof, connected to pro-
cessing device 200. For example, the discovery operation
includes data requesting the operating modes, connectivity,
numbers of cores, device architecture, and device hierar-
chies of devices identified in the scope of an atomic memory
operation and connected to processing device 200. In
embodiments, one or more hardware parameters of portions
of a system, devices, memories, memory hierarchies, or any
combination thereof, connected to processing device 200 are
stored in a memory 206, similar to or the same as memory
106, for example, hardware parameters received from a
previous discovery operations.

According to embodiments, based on one or more scopes
identified in one or more atomic memory operations 226 to
be performed, target data identified in one or more received
atomic memory operations 226, and determined hardware
parameters, atomicity engine 232 is configured to determine
one or more coherency actions. In embodiments, atomicity
engine 232 provides one or more scopes identified in one or
more atomic memory operations 226 to be performed, target
data identified in one or more atomic memory operations
226 to be performed, determined hardware parameters, or
any combination thereof to one or more coherency lookup
tables 224. Coherency lookup tables (LUTs) 224 include one
or more software or hardware LUTs that include one or more
arrays configured to receive one or more scopes, target data
(e.g., location, cache, data content), or hardware parameters
as inputs and output one or more values. For example,
coherency LUTs 224 include one or more hardware LUTs
comprising an array of multiplexers configured to receive
one or more scopes, target data, or hardware parameters as
inputs and output a value. According to embodiments,
coherency LUTs 224 comprise one or more state machines
configured to receive one or more scopes, target data (e.g.,
location, cache, data content), or hardware parameters as
inputs and output one or more values. For example, for a
processing device 200 where hardware parameters are fixed,
LUTs 224 include one or more tables hardcoded as logic, for
example, as one or more state machines. In embodiments,
values output by coherency LUTs 224 identify one or more
coherency actions. That is to say, the values identify one or
more operations that are necessary for, assist in, or aid in
ensuring an atomic memory operation on the target data
input to the coherency LUTs 224 is coherent within the
scope input to the coherency LUTs 224 for hardware having
the hardware parameters input to the coherency LUTs 224.
According to embodiments, values output by the coherency
LUTs 224 are provided as inputs to one or more other LUTs
or operations configured to output values indicating one or
more coherency actions. In embodiments, LUTs 224 are
configured to receive one or more scopes, target data, or
hardware parameters as inputs and output one or more
orderings. An “ordering,” as used herein, indicates an order
of execution for one or more portions of a coherency action
relative to one or more portions of an atomic memory
operation to be performed. That is to say, in what order the
portions of the coherency action and atomic memory opera-
tions are to be performed. For example, an ordering indi-
cates whether a first portion of a coherency action is to be
performed before or after a at least a portion of an atomic
memory operation.

In embodiments, the coherency actions identified by
coherency LUTs 224 include operations to perform on one
or more devices, memory structures, or both connected to
processing device 200, for example, flushing one or more
memory structures (e.g., caches, data fabrics), invalidating

US 11,604,737 B1

7

one or more memory structures, bypassing one or more
memory structures, fencing one or more memory structures,
and fencing one or more threads, to name a few. For
example, a coherency operation identified by coherency
LUTs 224 includes a flush operation so as to flush a cache
from caches 238-2 connected to processing device 200 by
bus 212. As another example, a coherency operation iden-
tified by coherency LUTs 224 includes a bypassing opera-
tion so as to bypass cache level L1 236-1 of caches 234.
According to embodiments, the coherency actions identified
by coherency LUTs 224 include machine instructions, state
machine data, or both. Atomicity engine 232 is configured to
provide these coherency actions to microcode configured to
translate the coherency actions to one or more circuit-level
operations. In embodiments, processing device 200 includes
a high-speed memory (not shown for clarity) configured to
store the microcode. In embodiments, processing device 200
includes cores 230 configured to execute one or more
operations or microcode associated with one or more coher-
ency actions. Though the example embodiments of FIG. 2
illustrates processing device 200 with three cores (230-1,
230-2, 230-N) representing an N number of cores, in other
embodiments, processing device 200 may have any number
of cores.

According to embodiments, atomicity engine 232 deter-
mines one or more corrections based on one or more
discrepancies or incongruencies between the scope identi-
fied by the atomic memory operation, the target data iden-
tified by the atomic memory operation, and the hardware
parameters such as, for example, discrepancies or incongru-
encies between device operating modes, device architec-
tures, device connectivity, memory locations, and memory
architectures, to name a few. As an example, atomicity
engine 232 determines an incongruency based on a scope of
an atomic memory operation that identifies a device having
eight cores and a hardware parameter indicating that the
device is operating as two four-core systems according to its
operating mode. As another example, atomicity engine 232
determines a discrepancy based on a target data identified in
an atomic memory operation at a first location and a hard-
ware parameter indicating the target data is at a second
location. In embodiments, atomicity engine 232 is config-
ured to determine a correction based on the identified
discrepancies and incongruencies. A “correction,” as used
herein, includes data representing updated parameters,
modifications, or inputs necessary for, assisting in, or aiding
in the mitigation of the identified discrepancies and incon-
gruencies. For example, based on an incongruency of a
scope that identifies a device as having eight cores and a
hardware parameter indicating that the device is operating as
two four-core systems, atomicity engine 232 determines an
update to the scope to indicate a device operating as two-
four core systems rather than one device. As another
example, based on a discrepancy of a target data identified
in an atomic memory operation at a first location and a
hardware parameter indicating the target data at a second
location, atomicity engine 232 determines an update to the
target data to indicate the target data is at the second
location. In embodiments, atomicity engine 232 provides
data representing the determined discrepancies and incon-
gruencies as inputs to coherency LUTs 224 further config-
ured to output data representing one or more corrections. By
determining one or more corrections based on the deter-
mined discrepancies and incongruencies, atomicity engine
232 can update the inputs provided to coherency LUTs 224
at run time. As such, the resulting coherency actions are

10

15

20

25

30

35

40

45

50

55

60

65

8

updated at run time so that the determination of coherency
actions can occur during runtime rather than during a basic
input/output system (BIOS).

In embodiments, atomicity engine 232 is further config-
ured to determine one or more corrections further based on
system performance. For example, based on one or more
determined hardware parameters, scopes, and target data,
atomicity engine 232 determines an impact of one or more
atomic memory operations 226 on the processing speed,
power usage, delay times, queue lengths, or any combina-
tion thereof of system 100, to name a few. Based on the
impact of the atomic memory operation 226 and the deter-
mined hardware parameters, atomicity engine 232 deter-
mines one or more corrections to mitigate the impact of the
atomic memory operation 226 on the processing speed,
efficiency, power usage, delay times, queue lengths, or any
combination thereof of system 100. For example, atomicity
engine 232 compares the impact of the atomic memory
operation to one or more thresholds representing threshold
values for the processing speed, power usage, delay times,
queue lengths, or any combination thereof of system 100. As
another example, atomicity engine 232 provide values the
impact to one or more coherency LLUTs 224 configured to
output values representing one or more corrections. As yet
another example, processing device 200 determines a power
usage based on a hardware parameter and an atomic memory
operation to be performed. Processing device 200 then
identifies a correction comprising a modification to a coher-
ency action based on the power usage and modifies the
coherency action based on the correction.

Referring now to FIG. 3, a block diagram of an atomicity
engine 332, similar to or the same as atomicity engine 232,
configured to determine one or more coherency actions is
presented. Atomicity engine 332 includes hardware and
software configured to, in response to one or more atomic
memory operations to be performed, determine one or more
coherency actions 350. In embodiments, atomicity engine
332 includes hardware parameter engine 340 including
hardware and software configured to determine one or more
hardware parameters 346 based on an atomic memory
operation to be performed. For example, hardware param-
eter engine 340 determines one or more hardware param-
eters 346 based on one or more portions of a system,
devices, memories, memory hierarchies, or any combination
thereof identified in a scope of an atomic memory operation.
Such hardware parameters 346 include one or more param-
eters necessary for, aiding in, or assisting in ensuring coher-
ency within the scope identified by an atomic memory
operation to be performed, for example, operating modes
(e.g., performance mode, power-saving mode, two-core
mode, four-core mode, split mode, thread mode), addresses,
connectivity (e.g., how devices are connected, number of
ports, available ports, communication protocols), device
architecture (e.g., number of cores), device hierarchies,
memory locations, and memory architectures of the portions
of a system, devices, memories, memory hierarchies, or any
combination thereof identified in a scope of an atomic
memory operation, to name a few. According to embodi-
ments, hardware parameter engine 340 is configured to
determine hardware parameters 346 by performing one or
more discovery operations requesting data from the portions
of a system, devices, memories, memory hierarchies, or any
combination thereof identified in a scope of an atomic
memory operation. In embodiments, hardware parameter
engine 340 is configured to retrieve hardware parameters
relating to the portions of a system, devices, memories,
memory hierarchies, or any combination thereof identified

US 11,604,737 B1

9

in a scope of an atomic memory operation from a memory
similar to or the same as memory 106. In embodiments, one
or more hardware parameters may be stored in a memory
similar to or the same as memory 106 by one or more other
processing devices connected to the processing device. For
example, one or more other processing devices execute a
software driver configured to identify one or more hardware
parameters and store them in the memory.

According to embodiments, atomicity engine 332
includes correction engine 342 that includes hardware and
software configured to determine one or more corrections
348 based on atomic memory operations to be performed
and hardware parameters 346. For example, correction
engine 342 compares a scope identified in an atomic
memory operation, a target data identified in an atomic
memory operation, and hardware parameters 346 to deter-
mine one or more discrepancies or incongruencies. As an
example, based on a comparison of a scope indicating a level
of'a memory cache and a hardware parameter indicating that
level is not accessible, correction engine 342 determines a
discrepancy. As another example, based on a comparison of
a scope indicating a memory cache local to a device and a
hardware parameter indicating that the memory is connected
to the device by a bus, correction engine 342 determines a
discrepancy. In response to determining a discrepancy or
incongruency, correction engine 342 determines one or more
corrections 348. Corrections 348 include updated param-
eters, modifications, or inputs necessary for, assisting in, or
aiding in the mitigation of the impact the identified discrep-
ancies and incongruencies may have on the coherency of the
atomic memory operation. For example, corrections 348
include updating one or more scopes, target data, or hard-
ware parameters 346 to mitigate any impact the identified
discrepancies and incongruencies have on the coherency of
the atomic memory operation. As an example, corrections
348 include updating one or more scopes or target data to
reflect the most recent data in hardware parameters 346. As
another example, corrections 348 include updating hardware
parameters 346 at runtime. In embodiments, corrections 348
include updating one or more scope, target data, or hardware
parameters 346 to mitigate any impact an atomic memory
operation to be performed has on system performance. That
is to say, the impact on one or more processing speeds,
power usages, delay times, queue lengths, or any combina-
tion thereof of system 100, to name a few. For example,
correction engine 342 determines a power usage based on a
hardware parameter and an atomic memory operation to be
performed. Correction engine 342 then identifies a correc-
tion comprising a modification to a coherency action based
on the power usage and modifies the coherency action based
on the correction.

In embodiments, atomicity engine 332 includes coher-
ency engine 344 that includes hardware and software con-
figured to receive hardware parameters 346 and corrections
348 and output one or more coherency actions 350. Accord-
ing to embodiments, coherency engine 344 is configured to
perform one or more corrections 348 on scopes identified in
atomic memory operations, target data identified in atomic
memory operations, or hardware parameters 346. For
example, coherency engine 344 updates one or more scopes,
target data, or hardware parameters 346 based on one or
more corrections 348. In embodiments, coherency engine
344 provides one or more scopes identified in atomic
memory operations, target data identified in atomic memory
operations, hardware parameters 346, and corrections 348 to
coherency LUTs 324, similar to or the same as coherency
LUTs 224. Coherency LUTs 324 include hardware LUTs

10

15

20

25

30

35

40

45

50

55

60

65

10

configured to receive one or more scopes, target data,
hardware parameters 346, corrections 348, or any combina-
tion thereof and output one or more values indicating one or
more coherency actions 350. For example, in response to
receiving one or more scopes, target data, hardware param-
eters 346, corrections 348, or any combination thereof as an
input, coherency LUTs 324 output one or more values each
respectively indicating, for example, updating state
machines, flushing one or more memory structures (e.g.,
caches, data fabrics), invalidating one or more memory
structures, bypassing one or more memory structures, fenc-
ing one or more memory structures, and fencing one or more
threads, to name a few. According to embodiments, coher-
ency LUTs 324 are further configured to receive one or more
scopes, target data, hardware parameters 346, corrections
348, or any combination thereof and output a value indicat-
ing one or more orderings for portions of one or more
coherency actions and portions of atomic memory opera-
tions. That is to say, an ordering indicating what order the
portions of the coherency actions and the atomic memory
operations are to be performed or executed. In embodiments,
coherency engine 344 is configured to determine the one or
more coherency actions 350 indicated based on the output
values of the coherency LUTs. In embodiments, coherency
engine 344 is configured to determine machine instructions,
state machine data, or both associated with coherency
actions 350 and retrieve the determined machine instruc-
tions, state machine data, or both from a memory similar to
or the same as memory 106. According to embodiments,
coherency engine 344 provides the determined machine
instructions, state machine data, or both associated with
coherency actions 350 to microcode configured to translate
the determined machine instructions and state machine data
into one or more circuit-level operations. Coherency engine
344 then provides the circuit-level operations to one or more
processing devices for execution.

Referring now to FIG. 4, a flow diagram illustrating an
example method 400. for performing a hardware-agnostic
atomic memory operation is presented. At step 405, a
processing device, similar to or the same as processing
device 200, causes one or more atomic memory operations
to be performed each identifying a scope and a target data.
Based on the atomic memory operations to be performed,
the processing device determines one or more scopes and
target data for coherency. At step 410, the processing device
determines one or more hardware parameters based on the
atomic memory operations to be performed. That is to say,
the processing device determines the hardware parameters
based on the determined scopes identified by the atomic
memory operations to be performed. In embodiments, the
processing device determines the hardware parameters
according to the portions of a system, devices, memories,
memory hierarchies, or any combination thereof identified
in the scopes of the atomic memory operations to be
performed. For example, the processing device can retrieve
the hardware parameters associated with the portions of a
system, devices, memories, memory hierarchies, or any
combination thereof identified in the atomic memory opera-
tions to be performed from a memory similar to or the same
as memory 106, perform one or more discover operations to
determine the hardware parameters associated with the
portions of a system, devices, memories, memory hierar-
chies, or any combination thereof identified in the atomic
memory operations to be performed or both.

At step 415, in response to determining one or more
hardware parameters, the processing device determines one
or more corrections. According to embodiments, the pro-

US 11,604,737 B1

11

cessing device compares one or more scopes identified in
atomic memory operations to be performed, target data
identified in atomic memory operations, determined hard-
ware parameters, or any combination thereof. Based on the
comparisons, the processing device determines one or more
discrepancies or incongruencies between the scopes identi-
fied in atomic memory operations to be performed, target
data identified in atomic memory operations, and deter-
mined hardware parameters. From the discrepancies or
incongruencies, the processing device determines one or
more corrections. That is to say, the processing device
determines one or more updated parameters, modifications,
or inputs necessary for, assisting in, or aiding in the miti-
gation of the impact the identified discrepancies and incon-
gruencies may have on the coherency of the atomic memory
operation. For example, the processing device determines
one or more corrections that include updating one or more
scopes, target data, or hardware parameters to mitigate the
impact the identified discrepancies and incongruencies have
on the coherency of an atomic memory operation to be
performed. By determining one or more corrections based
on the determined discrepancies and incongruencies, the
processing device can update the inputs at run time. This
allows the processing device to determine more efficient
coherency actions and increases overall processor efficiency.

At step 420, the processing device determines one or more
coherency actions based on the determined scopes, target
data, hardware parameters, and corrections. For example,
the processing device provides one or more scopes, target
data, hardware parameters, corrections, or any combination
thereof to one or more hardware LUTs, similar to or the
same as coherency LUTs 224, as inputs. In response to
receiving the scopes, target data, hardware parameters, and
corrections, the LUTs output values indicating one or more
coherency operations. That is to say, the LUTs output values
indicating one or more operations necessary for, assisting in,
or aiding in ensuring that the atomic memory operations to
be performed are coherent within the scope identified by the
atomic memory operations. Such operations include, for
example, updating state machines, flushing one or more
memory structures (e.g., caches, data fabrics), invalidating
one or more memory structures, bypassing one or more
memory structures, fencing one or more memory structures,
and fencing one or more threads, to name a few. In embodi-
ments, one or more LUTs output one or more values
indicating one or more orderings for portions of coherency
actions and atomic memory operations based on one or more
received scopes, target data, hardware parameters, and cor-
rections. That is to say, the LUTs output values indicating
the order in which portions of coherency actions and atomic
memory operations are to be performed. At step 425, the
processing device executes one or more coherency actions
indicated by the outputs of the LUTs and according to one
or more orderings. For example, the processing device can
retrieve machine instructions, state machine data, or both
associated with the indicated coherency actions, provide
machine instructions, state machine data, or both associated
with the indicated coherency actions to microcode config-
ured to translate the determined machine instructions and
state machine data into one or more circuit-level operations,
or both. At step 430, based on one or more orderings
indicated by the LUTs, the processing device performs one
or more of the atomic memory operations to be performed.
In this way, the operations to help ensure atomicity of the
atomic memory operations are determined at the hardware
allowing the atomic memory operations to be device-agnos-
tic.

10

15

20

25

30

35

40

45

50

55

60

65

12

In some embodiments, the apparatus and techniques
described above are implemented in a system including one
or more integrated circuit (IC) devices (also referred to as
integrated circuit packages or microchips), such as the
system described above with reference to FIGS. 1-4. Elec-
tronic design automation (EDA) and computer-aided design
(CAD) software tools may be used in the design and
fabrication of these IC devices. These design tools typically
are represented as one or more software programs. The one
or more software programs include code executable by a
computer system to manipulate the computer system to
operate on code representative of circuitry of one or more IC
devices so as to perform at least a portion of a process to
design or adapt a manufacturing system to fabricate the
circuitry. This code can include instructions, data, or a
combination of instructions and data. The software instruc-
tions representing a design tool or fabrication tool typically
are stored in a computer-readable storage medium accessible
to the computing system. Likewise, the code representative
of one or more phases of the design or fabrication of an IC
device may be stored in and accessed from the same
computer-readable storage medium or a different computer-
readable storage medium.

A computer-readable storage medium may include any
non-transitory storage medium, or combination of non-
transitory storage media, accessible by a computer system
during use to provide instructions and/or data to the com-
puter system. Such storage media can include, but is not
limited to, optical media (e.g., compact disc (CD), digital
versatile disc (DVD), Blu-ray disc), magnetic media (e.g.,
floppy disc, magnetic tape, or magnetic hard drive), volatile
memory (e.g., random access memory (RAM) or cache),
non-volatile memory (e.g., read-only memory (ROM) or
Flash memory), or microelectromechanical systems
(MEMS)-based storage media. The computer-readable stor-
age medium may be embedded in the computing system
(e.g., system RAM or ROM), fixedly attached to the com-
puting system (e.g., a magnetic hard drive), removably
attached to the computing system (e.g., an optical disc or
Universal Serial Bus (USB)-based Flash memory), or
coupled to the computer system via a wired or wireless
network (e.g., network accessible storage (NAS)).

In some embodiments, certain aspects of the techniques
described above may be implemented by one or more
processors of a processing system executing software. The
software includes one or more sets of executable instructions
stored or otherwise tangibly embodied on a non-transitory
computer-readable storage medium. The software can
include the instructions and certain data that, when executed
by the one or more processors, manipulate the one or more
processors to perform one or more aspects of the techniques
described above. The non-transitory computer-readable stor-
age medium can include, for example, a magnetic or optical
disk storage device, solid-state storage devices such as Flash
memory, a cache, random access memory (RAM) or other
non-volatile memory device or devices, and the like. The
executable instructions stored on the non-transitory com-
puter-readable storage medium may be in source code,
assembly language code, object code, or other instruction
format that is interpreted or otherwise executable by one or
more processors.

Note that not all of the activities or elements described
above in the general description are required, that a portion
of a specific activity or device may not be required, and that
one or more further activities may be performed, or elements
included, in addition to those described. Still, further, the
order in which activities are listed is not necessarily the

US 11,604,737 B1

13

order in which they are performed. Also, the concepts have
been described with reference to specific embodiments.
However, one of ordinary skill in the art appreciates that
various modifications and changes can be made without
departing from the scope of the present disclosure as set
forth in the claims below. Accordingly, the specification and
figures are to be regarded in an illustrative rather than a
restrictive sense, and all such modifications are intended to
be included within the scope of the present disclosure.

The preposition “or” as used in the context of “at least one
of A, B, or C”, is herein used to signify an “inclusive or.”
That is to say, in the above and similar contexts, or is used
to signify “at least one of or any combination thereof.” For
example, “at least one of A, B, and C” is used to signify “at
least one of A, B, C, or any combination thereof.”

Benefits, other advantages, and solutions to problems
have been described above with regard to specific embodi-
ments. However, the benefits, advantages, solutions to prob-
lems, and any feature(s) that may cause any benefit, advan-
tage, or solution to occur or become more pronounced are
not to be construed as a critical, required, or essential feature
of any or all the claims. Moreover, the particular embodi-
ments disclosed above are illustrative only, as the disclosed
subject matter may be modified and practiced in different but
equivalent manners apparent to those skilled in the art
having the benefit of the teachings herein. No limitations are
intended to the details of construction or design herein
shown, other than as described in the claims below. It is
therefore evident that the particular embodiments disclosed
above may be altered or modified and all such variations are
considered within the scope of the disclosed subject matter.
Accordingly, the protection sought herein is as set forth in
the claims below.

What is claimed is:

1. A method comprising:

in response to identifying an atomic memory operation to

be performed at a core of a processor, determining, at
the core of the processor, a hardware parameter based
on a scope indicated in the atomic memory operation to
be performed;

identifying a coherency action based on the hardware

parameter and the scope; and

in response to identifying the coherency action, perform-

ing at least a portion of the atomic memory operation
at the core of the processor.

2. The method of claim 1, wherein identifying the coher-
ency action based on the hardware parameter and the scope
further comprises:

providing data representing the scope and the hardware

parameter to a plurality of lookup tables configured to
output a value indicating the coherency action in
response to receiving the scope and the hardware
parameter.

3. The method of claim 2, wherein the plurality of lookup
tables is further configured to output a value indicating an
ordering for at least a portion of the coherency action and at
least a portion of the atomic memory operating.

4. The method of claim 3, further comprising:

performing at least a portion of the coherency action and

at least a portion of the atomic memory operation based
on the ordering.

5. The method of claim 1, further comprising:

comparing the scope to the hardware parameter; and

determining a correction based on the comparison of the
scope to the hardware parameter,

wherein the coherency action is identified further based

on the correction.

w

10

20

25

30

40

50

55

60

65

14

6. The method of claim 1, wherein the at least a portion
of the coherency action includes a flush or invalidate opera-
tion on a cache.

7. The method of claim 1, further comprising:

translating state machine data associated with the coher-

ency action into a circuit-level operation; and
executing at least a portion of the coherency action,

wherein executing at least a portion of the coherency

action includes executing the circuit-level operation.

8. An apparatus comprising:

a cache; and

a processing device connected to the cache and configured

to:

identify, at a core of the processing device, an atomic
memory operation to be performed indicating a
scope and a target data;

determine, at the core, a plurality of hardware param-
eters based on the scope and the target data;

identify a coherency action based on the scope, target
data, and plurality of hardware parameters;

execute at least a portion of the coherency action; and

perform the atomic memory operation.

9. The apparatus of claim 8, wherein at least a portion of
the coherency action includes a flush operation of the cache.

10. The apparatus of claim 8, wherein at least a portion of
the coherency action includes a bypass of the cache.

11. The apparatus of claim 8, wherein the processing
device is further configured to:

determine the plurality of hardware parameters further

based on the cache and based on a bus connecting the
cache and the processing device.

12. The apparatus of claim 8, wherein the plurality of
hardware parameters includes an operating mode of a sec-
ond processing device connected to the bus.

13. The apparatus of claim 8, further comprising:

a plurality of hardware lookup tables configured to:

receive the scope, target data, and plurality of hardware
parameters as inputs; and

output a value indicating the coherency action and an
ordering of the at least a portion of the coherency
action and the at least a portion of the atomic
memory operation.

14. The apparatus of claim 8, wherein the processing
device is further configured to:

determine a power usage based on one or more hardware

parameters and the atomic memory operation to be
performed;

identify a correction based on the determined power

usage; and

modify at least a portion of the coherency action based on

the correction.

15. The apparatus of claim 14, wherein the processing
device is configured to determine the correction at a runtime
of the processing device.

16. The apparatus of claim 14, wherein the processing
device is further configured to:

update the scope based on the correction.

17. A method comprising:

identifying, at a first processing device connected to a

second processing device, an atomic memory operation
to be performed;

determining a plurality of hardware parameters based on

the first processing device, second processing device,
and atomic memory operation;

identifying a coherency action and an ordering for at least

a portion of the coherency action and at least a portion

US 11,604,737 B1

15

of the atomic memory operation based on the plurality
of hardware parameters and the atomic memory opera-
tion; and

executing at least a portion of the coherency action and at

least a portion of the atomic memory operation based
on the ordering.

18. The method of claim 17, wherein the plurality of
hardware parameters is further determined based on a bus
connecting the first and second processing devices.

19. The method of claim 17, wherein the plurality of
hardware parameters includes an operating mode of the first
processing device.

20. The method of claim 17, wherein the plurality of
hardware parameters includes an operating mode of the
second processing device.

#* #* #* #* #*

15

16

