
US011347486B2

(12) United States Patent
Rodgers et al .

(10) Patent No .: US 11,347,486 B2
(45) Date of Patent : May 31 , 2022

(54) COMPILER - INITIATED TILE
REPLACEMENT TO ENABLE HARDWARE
ACCELERATION RESOURCES

(71) Applicant : ADVANCED MICRO DEVICES ,
INC . , Santa Clara , CA (US)

10,032,110 B2
2007/0169059 Al
2017/0200094 Al
2018/0107456 A1 *
2018/0157471 A1
2019/0179870 A1
2019/0325303 A1
2019/0370631 Al
2019/0392296 A1
2021/0048991 A1 *

7/2018 Young et al .
7/2007 Halambi et al .
7/2017 Bruestle et al .
4/2018 Bruestle G06F 17/12
6/2018 Venkataramani et al .
6/2019 Bannon et al .
10/2019 Daga et al .
12/2019 Fais et al .
12/2019 Brady et al .
2/2021 Tanner G06F 8/4442

(72) Inventors : Gregory P. Rodgers , Austin , TX (US) ;
Joseph L. Greathouse , Austin , TX
(US)

OTHER PUBLICATIONS (73) Assignee : Advanced Micro Devices , Inc. , Santa
Clara , CA (US)

2 (*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U.S.C. 154 (b) by 71 days .

Zerrel et al . “ Stripe : Tensor Compilation via the Nested Polyhedral
Model ” , Mar. 18 , 2019 , retrieved from < https://arxiv.org/pdf/1903 .
06498.pdf > , total pages 13. (Year : 2019) . *
J. Kim et al . , “ A Code Generator for High - Performance Tensor
Contractions on GPUs , ” 2019 IEEE / ACM International Symposium
on Code Generation and Optimization (CGO) , 2019 , pp . 85-95 , doi :
10.1109 / CGO.2019.8661182 . (Year : 2019) . *

(Continued)

> >

(21) Appl . No .: 16 / 832,275

(22) Filed : Mar. 27 , 2020

(65) Prior Publication Data Primary Examiner Marina Lee
US 2021/0303284 A1 Sep. 30 , 2021

(57) ABSTRACT (51) Int . Cl .
GO6F 8/41 (2018.01)
G06F 17/16 (2006.01)

(52) U.S. Ci .
CPC G06F 8/4435 (2013.01) ; G06F 17/16

(2013.01)
(58) Field of Classification Search

CPC GO6F 8/452 ; GO6F 8/443 ; G06F 8/4434 ;
GO6F 8/4435 ; G06F 17/16

See application file for complete search history .

A processing system includes a compiler that automatically
identifies sequences of instructions of tileable source code
that can be replaced with tensor operations . The compiler
generates enhanced code that replaces the identified
sequences of instructions with tensor operations that invoke
a special - purpose hardware accelerator . By automatically
replacing instructions with tensor operations that invoke the
special - purpose hardware accelerator , the compiler makes
the performance improvements achievable through the spe
cial - purpose hardware accelerator available to programmers
using high - level programming languages .

(56) References Cited

U.S. PATENT DOCUMENTS

8,336,036 B2
8,789,026 B2

12/2012 Kim et al .
7/2014 Auerbach et al . 19 Claims , 5 Drawing Sheets

500
502

RECEIVE SOURCE CODE

504

RECEIVE INDICATION THAT SOURCE CODE IS TILEABLE

506
RECEIVED HINT INDICATING THAT AN INNER LOOP OF THE TILE IS

REPLACEABLE WITH A TYPE OF TENSOR OPERATION ?

508 NO YES
-510

COMPARE DIMENSIONS AND DATA
TYPE OF A SEQUENCE OF

INSTRUCTIONS OF INNER LOOP TO A
SET OF TENSOR OPERATIONS

COMPARE DIMENSIONS AND DATA
TYPE OF A SEQUENCE OF

INSTRUCTIONS OF INNER LOOP TO A
SUBSET OF TENOR OPERATIONS

SPECIFIED BY THE TYPE

512
MATCH ?

YES NO
514 -516

GENERATE CODE REPLACING
MATCHING SEQUENCE OF

INSTRUCTIONS OF INNER LOOP WITH
MATCHING TENSOR OPERATION

GENERATE CODE INVOKING
EXECUTION OF NON - MATCHING
SEQUENCE OF INSTRUCTIONS OF
INNER LOOP AT GENERAL PURPOSE

PROCESSOR

518
GENERATE WRAPPER INVOKING

EXECUTION OF TENSOR OPERATION
AT SPECIAL PURPOSE PROCESSOR

US 11,347,486 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Leback , Brent , “ Bringing Tensor Cores to Standard Fortran ” , NVIDIA
Developer , Aug. 7 , 2020 , 8 pages .
Gan , Ge , et al . , “ Tile Percolation : an OpenMP Tile Aware Paral
lelization Technique for the Cyclops - 64 Multicore Processor ” , Euro
Par , 2009 , 13 pages .
Gan , Ge et al . , “ Tile Percolation : an OpenMP Tile Aware Paral
lelization Technique for the Cyclops - 64 Multicore Processor , ” Euro
pean Conference on Parallel Processing , Lecture Notes in Computer
Science , vol . 5704. Springer , Berlin , Heidelberg , pp . 839-850 ,
University of Delaware , Newark , Delaware 19716 , U.S.A. , 2009 , 13
pages .
International Search Report dated Jul . 20 , 2021 for Application No.
PCT / US2021 / 024154 , 8 pages .

* cited by examiner

U.S. Patent May 31 , 2022 Sheet 1 of 5 US 11,347,486 B2 9

100
CPU
102

APPLICATIONS
112

TLB
118 H JOMMU

116
OPERATING SYSTEM

108

GRAPHICS PROCESSING
PIPELINE 130 SYSTEM MEMORY

106

SCHEDULER
128

COMPILER
120

SPECIAL PURPOSE
HARDWARE

ACCELERATOR
124

GENERAL
PURPOSE

PROCESSING
CORE
122

DEVICE DRIVER
114

APD
104

110

FIG . 1

U.S. Patent May 31 , 2022 Sheet 2 of 5 US 11,347,486 B2

SOURCE
CODE
202

" TILE " PRAGMA
203

201
PARSE SOURCE CODE
AND COMPARE TO

TENSOR OPERATIONS

PERFECT TILE
204

REMAINDER
206

207
REPLACE PERFECT

TILE WITH MATCHING
TENSOR OPERATION

TENSOR
OPERATION

208

REMAINDER
206

FIG . 2

U.S. Patent May 31 , 2022 Sheet 3 of 5 US 11,347,486 B2 9

16X16 MATRIX MULTIPLY
305

202

REMAINING OPERATIONS
310

16X16 GEMM OPERATION
315

TENSOR LIBRARY
322

COMPILER
120

FIG . 3

U.S. Patent May 31 , 2022 Sheet 4 of 5 US 11,347,486 B2

PARSER
420

TENSOR
LIBRARY

322
SOURCE
CODE
202

COMPILER
GENERATED

CODE
404 GENERAL

SOURCE
TEMPLATES

424

TENSOR
SOURCE

TEMPLATES
426

" TILE " PRAGMA
203 ENHANCED

COMPILER
GENERATED

CODE
406

TENSOR LAUNCH
TEMPLATES

428

TENSOR HEADER
TEMPLATES

430 HINT
402

COMPILER
120

FIG . 4

U.S. Patent May 31 , 2022 Sheet 5 of 5 US 11,347,486 B2

500
502

RECEIVE SOURCE CODE

504

RECEIVE INDICATION THAT SOURCE CODE IS TILEABLE

506
RECEIVED HINT INDICATING THAT AN INNER LOOP OF THE TILE IS

REPLACEABLE WITH A TYPE OF TENSOR OPERATION ?

508 NO YES
510

COMPARE DIMENSIONS AND DATA
TYPE OF A SEQUENCE OF

INSTRUCTIONS OF INNER LOOP TO A
SET OF TENSOR OPERATIONS

COMPARE DIMENSIONS AND DATA
TYPE OF A SEQUENCE OF

INSTRUCTIONS OF INNER LOOP TO A
SUBSET OF TENSOR OPERATIONS

SPECIFIED BY THE TYPE

512
MATCH ?

YES NO
514 . 516

GENERATE CODE REPLACING
MATCHING SEQUENCE OF

INSTRUCTIONS OF INNER LOOP WITH
MATCHING TENSOR OPERATION

GENERATE CODE INVOKING
EXECUTION OF NON - MATCHING
SEQUENCE OF INSTRUCTIONS OF
INNER LOOP AT GENERAL PURPOSE

PROCESSOR

518

GENERATE WRAPPER INVOKING
EXECUTION OF TENSOR OPERATION
AT SPECIAL PURPOSE PROCESSOR

FIG . 5

US 11,347,486 B2
1 2

COMPILER - INITIATED TILE FIG . 5 is a flow diagram illustrating a method for iden
REPLACEMENT TO ENABLE HARDWARE tifying and replacing compiler - generated code for tiles of

ACCELERATION RESOURCES input source code with tensor operations executable at a
special - purpose hardware accelerator in accordance with

BACKGROUND some embodiments . 5

DETAILED DESCRIPTION Modern processor applications often require relatively
complex manipulation of vectors , matrices , and similar
structures . For example , vector and matrix manipulation is A processing system includes a compiler that automati

10 cally identifies sequences of instructions of source code that useful in graphics operations , digital signal processing appli
cations , machine learning , neural network applications , and will access blocks of memory , and that can be replaced with

tensor operations that are executable by a special - purpose the like . To enhance processing efficiency for these appli hardware accelerator of the processing system . A tensor cations and operations , modern processing systems employ operation is a vector or matrix operation such as a convo one or more general - purpose processors , such as a central 15 lution or a general matrix to matrix multiplication (GEMM) processing unit (CPU) , and one or more graphics processing commonly used in machine learning . The compiler gener
units (GPUs) that include a special - purpose hardware accel- ates enhanced code that replaces the identified sequences of
erator (also referred to as a hardware accelerator or shader instructions with tensor operations that invoke the special
intrinsics) , which is specialized hardware for specific types purpose hardware accelerator . By automatically replacing
of processing for relatively large blocks of data , such as 20 instructions with tensor operations that invoke the special
vector and matrix multiplications . Accordingly , the GPU can purpose hardware accelerator , the compiler makes the per
support graphics applications , as well as other operations formance improvements achievable through the special
that equire vector and matrix manipulation . purpose hardware accelerator available to programmers

In order to execute a function at the special - purpose using high - level programming languages , without requiring
hardware accelerator , the function must be invoked , or 25 specialized knowledge of low - level APIs .
called , by an application program executing at the process- In response to receiving an indication that a loop of source
ing system CPUs . Accordingly , the programmer of the code is “ tileable ” (i.e. , that indicates that particular functions
application program must include the function calls in the will access memory in a block , or “ tiled ” , manner) , the
application program . Typically , the programmer must compiler identifies inner loops of the tileable source code
employ an application program interface (API) associated 30 that match a set of tensor operations executable by a
with the special - purpose hardware accelerator in order to special - purpose hardware accelerator of the processing sys
ensure that the functions are properly called by the appli- tem . In response to identifying an inner loop that matches
cation program . For example , in some cases the programmer the dimensions and data type (i.e. , single precision or double
employs a kernel programming language such as Open precision) of a tensor operation executable by the special
Computing Language (OpenCL) , Heterogeneous - Comput- 35 purpose hardware accelerator of the processing system , the
ing Interface for Portability (HIP) , Vulkan , or the Compute compiler automatically replaces the inner loop with the
Unified Device Architecture (CUDA) to properly invoke a matching tensor operation . In some embodiments , the com
function of the special - purpose hardware accelerator . How- piler calls a component external to the compiler to determine
ever , such an API is usually complex , increasing the exper- whether a portion of compiler - generated code for a tile
tise and time required to prepare and debug the application 40 includes a sequence of instructions that can be replaced with
program . For example , the APIs typically require the pro- a tensor operation and to replace the portion of the generated
grammer to include , for each function call , supporting code for a tile with a tensor operation .
source code that ensures the corresponding function call is “ Tile ” constructs are used by programmers to indicate that
properly invoked and executed . This requires the program- particular source code functions will access memory in a
mer to have extensive knowledge of a potentially complex 45 tiled manner , thus allowing the compiler to generate opti
API , increasing programming and debug time . mized memory accesses and register blocking code . Loop

tiling is a loop transformation that takes advantage of spatial
BRIEF DESCRIPTION OF THE DRAWINGS and temporal locality of data accesses in loop nests . A tile

loop transformation allows data to be accessed in blocks , or
The present disclosure is better understood , and its numer- 50 tiles , with the tile size defined as a parameter of the

ous features and advantages made apparent to those skilled transformation . Each user - written loop is converted into a
in the art by referencing the accompanying drawings . The set of inner and outer loops . The tiles provide efficient
use of the same reference symbols in different drawings memory accesses to blocks of data having specific sizes that
indicates similar or identical items . are fixed at compile time and that are calculated based on
FIG . 1 is a block diagram of a processing system includ- 55 data sizes and cache size .

ing a compiler that automatically identifies and replaces a To invoke a tile construct that will signal the compiler to
portion of compiler - generated code for tiles of input source generate optimized memory accesses , a programmer
code that is identified as tileable with high - performance includes a pragma (e.g. , “ #pragma omp tile ”) indicating that
tensor operations to be executed at special - purpose hard- a loop includes a tile having certain dimensions (referred to
ware accelerator in accordance with some embodiments . 60 herein as an indication that a loop is “ tileable ”) . In response

FIG . 2 is a block diagram illustrating operation of the to a pragma indicating that a loop is tileable , the compiler
compiler of FIG . 1 in accordance with some embodiments . compares the inner loops of the tile to determine if any of the
FIG . 3 is a block diagram illustrating identification by the inner loops match the dimensions and data types of a set of

compiler of FIG . 1 of a perfect tile within a loop of source tensor operations executable by a special - purpose hardware
code in accordance with some embodiments . 65 accelerator of the processing system . An inner loop that
FIG . 4 is a block diagram of the compiler of FIG . 1 in matches the dimensions and data type of a tensor operation

accordance with some embodiments . executable by the special - purpose hardware accelerator of

a a

a
a

a

a

US 11,347,486 B2
3 4

the processing system is referred to herein as a “ perfect ” tile . by CPU 102. During execution , respective applications ,
Inner loops of the tile that do not match the dimensions and operating system functions , processing logic commands ,
data type of a tensor operation executable by the special- and system software reside in system memory 106. Control
purpose hardware accelerator of the processing system are logic commands that control the operating system 108
referred to herein as “ imperfect ” or “ remainder ” tiles . The 5 generally reside in system memory 106 during execution . In
compiler replaces perfect tiles with matching tensor opera- some embodiments , other software commands (e.g. , device
tions , facilitating access to the special - purpose hardware driver 114) also reside in system memory 106 during execu
accelerator that enhances processing performance , even tion of processing system 100 .
while using high - level source code . The IOMMU 116 is a multi - context memory management
FIG . 1 is a block diagram of a processing system 100 in 10 unit . As used herein , context is considered the environment

accordance with some embodiments . The processing system within which the kernels execute and the domain in which
100 includes a central processing unit (CPU) 102 and an synchronization and memory management is defined . The
accelerated processing device (APD) 104. In various context includes a set of devices , the memory accessible to
embodiments , the CPU 102 includes one or more single- or those devices , the corresponding memory properties , and
multi - core CPUs . In various embodiments , the APD 104 15 one or more command - queues used to schedule execution of
includes any cooperating collection of hardware and / or a kernel (s) or operations on memory objects . The IOMMU
software that perform functions and computations associ- 116 includes logic to perform virtual to physical address
ated with accelerating graphics processing tasks , data par- translation for memory page access for devices , such as the
allel tasks , nested data parallel tasks in an accelerated APD 104. In some embodiments , the IOMMU 116 also
manner with respect to resources such as conventional 20 includes , or has access to , a translation lookaside buffer
CPUs , conventional graphics processing units (GPUs) , and (TLB) 118. The TLB 118 , as an example , is implemented in
combinations thereof . In the embodiment of FIG . 1 , the a content addressable memory (CAM) to accelerate trans
processing system 100 is formed on a single silicon die or lation of logical (i.e. , virtual) memory addresses to physical
package that combines the CPU 102 and the APD 104 to memory addresses for requests made by the APD 104 for
provide a unified programming and execution environment . 25 data in system memory 106 .
In other embodiments , the CPU 102 and the APD 104 are In various embodiments , the communications infrastruc
formed separately and mounted on the same or different ture 110 interconnects the components of processing system
substrates . In some embodiments , the processing system 100 100. Communications infrastructure 110 includes (not
additionally includes one or more input interfaces , non- shown) one or more of a peripheral component interconnect
volatile storage , one or more output interfaces , network 30 (PCI) bus , extended PCI (PCI - E) bus , advanced microcon
interfaces , and one or more displays or display interfaces . troller bus architecture (AMBA) bus , advanced graphics
The processing system 100 generally executes sets of port (AGP) , or other such communication infrastructure and
instructions organized in the form of computer programs in interconnects . In some embodiments , communications infra
order to carry out tasks on behalf of an electronic device . structure 110 also includes an Ethernet network or any other
Accordingly , the processing system 100 can be used in any 35 suitable physical communications infrastructure that satis
of a variety of electronic devices , such as a desktop or laptop fies an application's data transfer rate requirements . Com
computer , server , smartphone , tablet , game console , and the munications infrastructure 110 also includes the functional
like . ity to interconnect components , including components of
As illustrated in FIG . 1 , the processing system 100 also processing system 100 .

includes a system memory 106 , an operating system 108 , a 40 A driver , such as device driver 114 , communicates with a
communications infrastructure 110 , and one or more appli- device (e.g. , CPU 102 and APD 104) through an intercon
cations 112. Access to system memory 106 is managed by a nect or the communications infrastructure 110. When a
memory controller (not shown) , which is coupled to calling program invokes a routine in the device driver 114 ,
memory 106. For example , requests from the CPU 102 or the device driver 114 issues commands to the device . Once
other devices for reading from or for writing to system 45 the device sends data back to the driver device 114 , the
memory 106 are managed by the memory controller . In device driver 114 invoke routines in an original calling
some embodiments , the one or more applications 112 program . In general , device drivers are hardware - dependent
include various programs or commands to perform compu- and operating - system - specific to provide interrupt handling
tations that are also executed at the CPU 102. The CPU 102 required for any necessary asynchronous time - dependent
sends selected commands for processing at the APD 104. 50 hardware interface . In some embodiments , a compiler 120 is
The operating system 108 and the communications infra- embedded within device driver 114. The compiler 120
structure 110 are discussed in greater detail below . The compiles source code into program instructions as needed
processing system 100 further includes a device driver 114 for execution by the processing system 100. During such
and a memory management unit , such as an input / output compilation , the compiler 120 applies transforms to program
memory management unit (IOMMU) 116. Components of 55 instructions at various phases of compilation . In other
the processing system 100 are implemented as hard - coded or embodiments , the compiler 120 is a stand - alone application .
programmable logic , one or more processors executing In some embodiments , the compiler 120 is executed by the
software / firmware instructions , or any combination thereof . CPU 102 or APD 104 and the CPU 102 or APD 104

Within the processing system 100 , the system memory therefore executes the compiler 120 operations described
106 includes non - persistent memory , such as DRAM (not 60 herein .
shown) . In various embodiments , the system memory 106 The CPU 102 includes (not shown) one or more of a
stores processing logic instructions , constant values , vari- control processor , field programmable gate array (FPGA) ,
able values during execution of portions of applications or application specific integrated circuit (ASIC) , or digital
other processing logic , or other desired information . For signal processor (DSP) . The CPU 102 executes at least a
example , parts of control logic to perform one or more 65 portion of the control logic that controls the operation of the
operations on CPU 102 reside within system memory 106 processing system 100. For example , in various embodi
during execution of the respective portions of the operation ments , the CPU 102 executes the operating system 108 , the

2

a

US 11,347,486 B2
5 6

one or more applications 112 , and the device driver 114. In items that execute simultaneously on a single SIMD unit 124
some embodiments , the CPU 102 initiates and controls the in line with the SIMD paradigm (e.g. , one instruction control
execution of the one or more applications 112 by distributing unit executing the same stream of instructions with multiple
the processing associated with one or more applications 112 data) . A scheduler 126 performs operations related to sched
across the CPU 102 and other processing resources , such as 5 uling various wavefronts on different processing cores 122
the APD 104 . and SIMD units 124 , as well as performing other operations

The APD 104 executes commands and programs for for orchestrating various tasks on the APD 104 .
selected functions , such as graphics operations and other The parallelism afforded by the one or more general
operations that are particularly suited for parallel processing . purpose processing cores 122 is suitable for graphics related
In general , APD 104 is frequently used for executing graph- 10 operations such as pixel value calculations , vertex transfor
ics pipeline operations , such as pixel operations , geometric mations , tessellation , geometry shading operations , and
computations , and rendering an image to a display , or as a other graphics operations . A graphics processing pipeline
machine learning accelerator , dataflow engine , audio pro- 128 accepts graphics processing commands from the CPU
cessor , and the like . In some embodiments , APD 104 also 102 and thus provides computation tasks to the one or more
executes compute processing operations (e.g. , those opera- 15 general - purpose processing cores 122 for execution in par
tions unrelated to graphics such as machine learning , video allel . Some graphics pipeline operations , such as pixel
operations , physics simulations , computational fluid dynam- processing and other parallel computation operations ,
ics , etc.) , based on commands or instructions received from require that the same command stream or compute kernel be
the CPU 102. For example , some commands are considered performed on streams or collections of input data elements .
special instructions that are not typically defined in the 20 Respective instantiations of the same compute kernel are
instruction set architecture (ISA) of the APD 104. A com- executed concurrently on multiple SIMD units in the one or
mand can be executed by a special processor , such as a more general - purpose processing cores 122 in order to
dispatch processor , command processor , or network control- process such data elements in parallel . As referred to herein ,
ler . for example , a compute kernel is a function containing

In various embodiments , the APD 104 includes one or 25 instructions declared in a program and executed on an APD
more compute units , such as one or more general - purpose general - purpose processing core 122. This function is also
processing cores 122 that include one or more single- referred to as a kernel , a shader , a shader program , or a
instruction , multiple - data (SIMD) units (not shown) that program .
execute a thread concurrently with execution of other Each general - purpose processing core 122 includes one or
threads in a wavefront , e.g. , according to a SIMD execution 30 more processing elements such as scalar and / or vector
model , and one or more hardware accelerators 124. The floating - point units , arithmetic and logic units (ALUS) , and
SIMD execution model is one in which multiple processing the like . In various embodiments , the general - purpose pro
elements share a single program control flow unit and cessing cores 122 also include special - purpose processing
program counter and thus execute the same program but are units (not shown) , such as inverse - square root units and
able to execute that program with different data . Some 35 sine / cosine units .
embodiments of the APD 104 are used to implement a GPU A work - item (e.g. , thread) in a wavefront executes on a
and , in that case , the general - purpose processing cores 122 SIMD hardware lane (hereinafter referred to as a “ SIMD
are referred to as shader cores or streaming multi - processors lane ”) during its execution . In one embodiment , the pro
(SMXs) . The number of general - purpose processing cores cessing elements of each SIMD unit are arranged into arrays
122 that are implemented in the APD 104 is a matter of 40 that each includes sixteen lanes , where each lane executes
design choice . the same instruction at the same time as the other lanes in the

Each of the one or more general - purpose processing cores SIMD unit but can execute that instruction with different
122 executes a respective instantiation of a particular work- data and with each work - item mapped to a lane during
item to process incoming data , where the basic unit of execution . In some embodiments , a wavefront is a group of
execution in the one or more general - purpose processing 45 sixty - four threads (and thus each thread of the wavefront is
cores 122 is a work - item (e.g. , a thread) . Each work - item assigned to a lane ranging from 0 to 63) , which are issued
represents a single instantiation of , for example , a collection in groups of sixteen threads through a sixteen - lane - wide
of parallel executions of a kernel invoked on a device by a SIMD unit over four cycles . However , those skilled in the art
command that is to be executed in parallel . A work - item can will recognize that the width of wavefronts and SIMD units
be executed by one or more processing elements as part of 50 include any configuration or number of threads (e.g. , 8 , 16 ,
a work - group executing at a general - purpose processing 32 , 64 , and the like) without departing from the scope of this
core 122 . disclosure .

The APD 104 includes GPUs that issue and execute Typical GPU programming languages are written from
work - items including groups of threads executed simulta- the perspective of a single thread . Some such languages
neously as a “ wavefront ” on a single SIMD unit . Multiple 55 allow specifying that a current thread should read a value
wavefronts are included in a “ work group , ” which includes from a specified different thread . In some embodiments , the
a collection of work - items designated to execute the same source code is written such that the thread to be read from
program . A work group is executed by executing each of the is computed from the current thread's ID . The APD 104
wavefronts that make up the work group . In some embodi- includes a special - purpose hardware accelerator 124 with
ments , the wavefronts are executed sequentially on a single 60 functionality that accelerates certain patterns of thread data
SIMD unit or partially or fully in parallel on different SIMD exchange . For example , data parallel primitive (DPP) func
units . In other embodiments , all wavefronts from a work- tionality of the hardware accelerator 124 allows threads
group are processed at the same general - purpose processing within a fixed - dimension wavefront to communicate with
core 122. Wavefronts are also interchangeably referred to as one another through their register files (i.e. , it obviates the
warps , vectors , or threads . In some embodiments , wave- 65 need to move data among lanes by allowing vector instruc
fronts include instances of parallel execution of a shader tions to perform cross - lane reading at full throughput) . In
program , where each wavefront includes multiple work- some embodiments the accelerator includes XDLOP func

2

>
a

5

10

US 11,347,486 B2
7 8

tionality invoked in response to corresponding XDLOP matching tensor operation , thereby exploiting the enhanced
instructions) that allows threads of a wavefront to work processing power of the special - purpose hardware accelera
together to perform matrix instructions with fixed dimen- tor 124 .
sions . It is difficult to express fixed - dimension mechanisms FIG . 2 illustrates an example operation of the compiler
such as DPPs and XDLOPs in programming models such as 120 of FIG . 1 in accordance with some embodiments . To
C , C ++ , FORTRAN , OpenCL , HIP , and CUDA , because invoke a tile construct that will signal the compiler to

generate optimized memory accesses , a programmer programmers typically express algorithms in dimensions of includes a " tile ” pragma 203 (e.g. , “ #pragma omp tile ”) an application domain such as a vector of dimension N or a indicating that a loop includes a tile having certain dimen matrix of dimension N by M. These application dimensions sions (referred to herein as an indication that a loop is are typically larger than the fixed dimensions of DPP or “ tileable ”) . At time 201 , the compiler 120 parses source code XDLOP instructions . Furthermore , these application dimen 202 in response to receiving the tile pragma 203 indicating
sions are not typically a multiple of the fixed dimensions . that the source code 202 is tileable . The compiler 120
These differences make it difficult for the programmer to compares sequences of instructions of the inner loops of the
utilize a specific set of high - performance vector or matrix 15 compiler - generated source code 202 to a set of tensor
operations such as convolutions or general matrix to matrix operations executable by the special - purpose hardware
multiplication operations (collectively , " tensor operations ”) accelerator 124. The compiler 120 identifies each inner loop
of a special - purpose hardware accelerator 124 . of the source code 202 that match the dimensions and data

Accordingly , the compiler 120 stores a set of tensor type of a tensor operation in the set as “ perfect tile ” 204. The
operations that can be executed at the special - purpose hard- 20 compiler 120 identifies inner loops of the source code 202
ware accelerator 124 and identifies inner loops of source that do not match the dimensions and data type of a tensor
code that access memory in blocks for more efficient operation in the set as imperfect , or “ remainder ” , tiles 206 .
memory accesses (i.e. , “ tileable ” source code) having At time 207 the compiler 120 replaces the perfect tile 204
sequences of instructions that can be replaced with one of with a tensor operation 208 to be executed at the special
the stored tensor operations . The compiler 120 replaces 25 purpose hardware accelerator 124 and leaves the remainder
inner loops that match the dimensions and data types of tiles 206 to be executed normally at the general - purpose
stored tensor operations executable by the special - purpose processing core 122 .
hardware accelerator (i.e. , “ perfect ” tiles) within the inner FIG . 3 is a block diagram illustrating identification by the
loops with tensor operations to generate enhanced code . The compiler of FIG . 1 of a perfect tile within a loop of source
enhanced code invokes the hardware accelerator 124 to 30 code in accordance with some embodiments . The compiler
execute the tensor operations . thereby allowing access to 120 includes a tensor library 322 that stores tensor opera
high performance processing of the hardware accelerator tions executable by the special - purpose hardware accelera
124 without requiring the use of low - level programming tor 124. In response to receiving an indication that source
languages . code 202 is tileable , the compiler 120 analyzes the inner

In some embodiments , during compilation , the compiler loops of the source code 202 to determine whether the
120 generates wrapper code (not shown) for the kernels of sequences of instructions of the inner loops match any tensor
the function calls for the source code . The wrapper code operations stored at the tensor library 322. In the illustrated
supports source code for each kernel by ensuring that the example , the tensor library 322 includes a tensor operation
kernels are properly called and executed at the GPU . that performs a 16x16 general matrix to matrix (GEMM)
Accordingly , the wrapper code can include memory alloca- 40 operation 315. The compiler 120 determines that an inner
tion instructions , data transfer instructions , variable and data loop of the source code 202 includes a sequence of instruc
structure declarations , and other code required by each tions to perform a 16x16 matrix multiply operation 305 .
kernel to be called and executed at the GPU . The compiler After confirming that the data type specified by the 16x16
120 generates the wrapper code by identifying and copying matrix multiply operation 305 matches the data type of the
one or more source code templates for each identified kernel . 45 16x16 GEMM tensor operation 315 , the compiler 120

To illustrate via an example , in some embodiments an identifies the 16x16 matrix multiply operation 315 as a
inner loop of tileable source code includes instructions for perfect tile . The compiler 120 identifies the remaining
performing a convolution or a general matrix to matrix operations 310 of the source code 202 that do not match any
multiplication (GEMM) . For example , if the compiler 120 tensor operations stored at the tensor library 322 as imper

fect tiles . compiles an inner loop of tileable source code that includes 50
a sequence of instructions to multiply two single - precision Thus , for example , given the following user code , where

N 16x16 matrices , the compiler 120 searches the set of stored may not be known at compile time , and where N may not
tensor operations executable at the special - purpose hard be evenly divisible by 16 ,
ware accelerator 124. If the compiler 120 determines that a
stored tensor operation is an aggregate instruction to per #pragma omp tile sizes (16,16,16)
form a general matrix to matrix multiplication matching the for (i = 0 ; i < N ; i ++)
dimensions (16x16) and data type (e.g. single precision) of for (j = 0 ; j < N ; j ++)
the sequence of instructions , the compiler 120 generates for (k = 0 ; k < N ; k ++)
enhanced code in which the sequence of instructions is C [i , j] + = A [i] [k] * B [k] [j]
replaced with the matching tensor operation . The compiler 60
includes a wrapper in the enhanced code to invoke the Internally , the compiler 120 generates the following equiva
special - purpose hardware accelerator 124 to execute the lent code as a result of a loop tiling transformation :

35

55

#define TSIZE 16

int rem = N % TSIZE :

US 11,347,486 B2
9 10

-continued
=

= >
=

==

==

==

==

=

int last_non_full_block = N ;
if (rem)

last_non_full_block = N rem ;
for (int ii = 0 ; ii < N ; ii + = TSIZE)

for (int jj = 0 ; jj < N ; jj + = TSIZE)
for (int kk = 0 ; kk < N ; kk + = TSIZE) {

if ((ii last_non_full_block) ||
Gj last_non_full_block) ||
(kk last_non_full_block)) {

/ * PARTIAL TILE * /
for (int i = ii ; i < (min (ii + TSIZE , N)) ; i ++)

for (int j = jj ; j < (min (jj + TSIZE , N)) ; j ++)
for (int k = kk ; k < (min (kk + TSIZE , N)) ; k ++)

C [i] [j] + = A [i] [k] * B [k] [j] ;
} else {

/ * MATRIX MULTIPLY FOR PERFECT TILE OF TSIZEXTSIZE * /
for (int i = ii ; i < ii + TSIZE ; i ++)

for (int j = jj ; j < jj + TSIZE ; j ++)
for (int k = kk ; k < kk + TSIZE ; k ++)

C [i] [j] + = A [i] [k] * B [k] [j] ;
}

}

:

by

int rem =
=

=

==

==

==

=

The compiler 120 then generates enhanced code replacing inner loop of the tileable source code 202. In some embodi
the matrix multiply instruction for the identified perfect tile ments , the source code 202 includes a hint 402 indicating
(i.e. , the non - partial tile) with an equivalent tensor operation 25 that an inner loop of the source code 202 matches a type of
denoted the function “ V_MFMA_F32_16 tensor operation of the tensor library 322 , for example ,
X16X16F16_WRAPPER (A , B , C , ii , jj , kk) ” " intrinsic (gemm) ” to indicate a general matrix to matrix

multiplication . If the compiler 120 receives a hint 402
indicating that an inner loop of the source code 202 is

#define TSIZE 16 30 replaceable with a type of tensor operation executable by the
N % TSIZE ; special - purpose hardware accelerator 124 , the compiler 120

int last_non_full_block = N ; searches only a subset of tensor operations corresponding to if (rem)
last_non_full_block = N - rem ; the type of tensor specified by the hint 402. Thu in

for (int ii = 0 ; ii < N ; ii + = TSIZE) response to receiving the hint 402 , the compiler 120 com
for (int jj = 0 ; jj < N ; jj + = TSIZE) 35 pares the dimensions and data type of the sequence of for (int kk = 0 ; kk < N ; kk + = TSIZE) {

if ((ii instructions of the inner loop of the source code 202 with a last_non_full_block) ||
(j last_non_full_block) || subset of tensor operations corresponding to the type of
(kk last_non_full_block)) { tensor operation specified by the hint 402 .
/ * PARTIAL TILE * / The general source templates 424 , tensor source templates
for (int i = ii ; i < (min (ii + TSIZE , N)) ; i ++)

for (int j = jj ; j < (min (jj + TSIZE , N)) ; j ++) 40 426 , tensor launch templates 428 , and tensor header tem
for (int k kk ; k < (min (kk + TSIZE , N)) ; k ++) plates 430 store source code to generate wrapper code for

C [i] [j] + = A [i] [k] * B [k] [j] ; each tensor identified by the compiler 120. Thus , each of the
} else { templates 426 , 428 , and 430 store pre - prepared text , sym V_MFMA_F32_16X16X16F16_WRAPPER (A , B , C , ii , jj , kk) ;
} bols , or other form of source code that , when compiled ,

} 45 allow a corresponding tensor operation to be executed
properly at a special - purpose hardware accelerator 124
associated with the templates . FIG . 4 is a block diagram of the compiler of FIG . 1 in To illustrate via an example , in some embodiments an accordance with some embodiments . In the depicted inner loop of tileable source code 202 includes a convolution

example , the compiler 105 includes a parser 420 , the tensor 50 or a general matrix to matrix multiplication (GEMM) . For
library 322 , general source templates 424 , tensor templates example , an inner loop of tileable source code 202 includes
426 , tensor launch templates 428 , and tensor header tem- a sequence of instructions to multiply two 16x16 matrices ,
plates 430. The parser 420 is implemented as hard - coded or add the product to a third 16x16 matrix , and store the result
programmable logic , one or more processors executing in the third matrix using a double precision data type :
software / firmware instructions , or any combination thereof . 55
The parser 420 analyzes strings of symbols in source code C [i , j] + = A [ij] * B [kj]
202 to identify function calls for a GPU . In some embodi- The compiler 120 searches the tensor library 322 and
ments the parser 420 can build a data structure (e.g. , a parse determines that the tensor library 322 includes a tensor
tree or other hierarchical structure) that indicates the func- operation that is an aggregate instruction to perform a
tions calls . 60 general matrix to matrix multiplication matching the dimen

After the parser 420 has generated the functional call data sions and data type of the sequence of instructions , i.e. ,
structure and the compiler 120 has received a “ tile ” pragma determines that the sequence of instructions are a perfect
203 in the source code 202 indicating that the source code tile . The templates 426 , 428 , and 430 corresponding to the
202 is tileable , the compiler 120 searches the tensor library matching tensor operation store source code that , when
322 to determine whether any tensor operations executable 65 compiled and executed , perform these operations to ensure
by the special - purpose hardware accelerator 124 match the that the special - purpose hardware accelerator 124 return
dimensions and data type of a sequence of instructions of an expected results .

2

2

2

a

a

US 11,347,486 B2
11 12

Accordingly , by copying the appropriate templates to the 406 , the compiler determines that it has not received a hint
wrapper code and compiling that code to be part of enhanced 402 indicating that an inner loop of a tile of the source code
compiler - generated code 306 , the compiler 120 ensures that 202 is replaceable with a type of tensor operation executable
the application file 120 performs as expected by the pro- at a special - purpose hardware accelerator 124 , the method
grammer . Further , the compiler 120 automatically identifies 5 flow continues to block 508. At block 508 , the compiler 120
and copies the appropriate templates for each perfect tile of compares the dimensions and data type of a sequence of
the source code 202. This relieves the programmer from instructions of an inner loop of the source code 202 to a set
having to learn a low - level programming language to access of tensor operations executable at the special - purpose hard
the special - purpose hardware accelerator 124 , reducing ware accelerator 124. The method flow then continues to
overall program time and effort while leveraging the 10 block 512 .
enhanced performance of the special - purpose hardware If , at block 506 , the compiler determines that it has
accelerator 124. This also allows programmers to write this received a hint 402 indicating that an inner loop of a tile of
code once . Only implementers of compiler 120 or and tensor the source code 202 is replaceable with a type of tensor
library 322 would need to make changes to allow the source operation executable at a special - purpose hardware accel
code 202 to use future hardware acceleration units . Mean- 15 erator 124 (e.g. , “ intrinsic (gemm) ") , the method flow con
while , for those portions of the source code 202 that are not tinues to block 510. At block 510 , the compiler 120 com
determined to be perfect tiles (i.e. , for imperfect , or remain- pares the dimensions and data type of a sequence of
der tiles) , the compiler 120 generates compiler - generated instructions of an inner loop of a tile of the source code 202
code 404 to be executed at the general - purpose processing to a subset of tensor operations specified by the type . The
core 122 . 20 method flow then continues to block 512 .

In operation , in response to receiving source code 202 and At block 512 , the compiler 120 determines whether the
a “ tile ” pragma 203 , the compiler 120 generates wrapper sequence of instructions of the inner loop of the tile matches
code for tensor operations to replace sequences of instruc- a tensor operation of the set of tensor operations stored at the
tions of inner loops of the source code 202 as follows . First , tensor library 322 (in the case of not having received a hint
the compiler 120 includes the general source templates 424 , 25 402 at block 506) , or whether the sequence of instructions of
a general set of source code required to execute the identified the inner loop of the tile matches a tensor operation of a
tensors . For example , the general source code can have a list subset of tensor operations corresponding to the type of
of reusable subroutines and defined data structures needed tensor operation indicated by the hint 402 (in the case of
during execution , and code to check if the special - purpose having received the hint 402 at block 506) . If , at block 512 ,
hardware accelerator 124 are available . This general source 30 the compiler 120 determines that there is a match , the
code keeps track of previous calls to the function to prevent method flow continues to block 514. At block 514 , in
unnecessary repetition of the accelerator initialization pro- response to the inner loop of the tile of source code 202

ext , for each identified tensor operation the compiler matching a tensor operation executable by the special
120 identifies a code template at the tensor source templates purpose hardware accelerator 124 (i.e. , identifying a perfect
426. Each tensor initialization template includes , for the 35 tile) , the compiler 120 generates code that replaces the
corresponding tensor , the code required to ensure that the matching sequence of instructions of the inner loop with the
tensor is properly invoked and executed . For example , this matching tensor operation . The method flow then continues
template has tensor - specific subroutines and data structures to block 518. At block 518 , the compiler 120 generates
that will be needed for each tensor operation . wrapper code to call the matching tensor operation and the

If the tensor operation is being called for the first time , this 40 matching tensor operation executes at the special - purpose
code initializes tensor - specific data structures . This code hardware accelerator 124. The method flow then continues
also tracks if a previous call initialized these data structures back to block 502 .
to avoid reinitializing the data structures . The compiler 120 If , at block 512 , the compiler 120 determines that there is
copies and customizes the identified tensor source templates not a match , or if there are sequences of instructions of the
to the wrapper code . The compiler 120 copies , from the 45 inner loop that do not match (while other sequences of
tensor launch templates 428 to the wrapper code , any source instructions match and therefore form a perfect tile) , the
code need to launch the tensor . Finally , the compiler 120 non - matching sequences of instructions are identified as
identifies a header for the tensor operation from the tensor " remainder ” tiles and the method flow continues to block
header templates 430 , and copies the identified header to a 516. At block 516 , the compiler 120 generates compiler
header file . The header file is used in the compilation of the 50 generated code for the remainder tiles to be executed at the
enhanced compiler - generated code 406 to ensure that the general - purpose processor 122. The method flow then con
application uses the correct set of arguments to call the tinues back to block 502 .
generated wrapper . The format for header files can vary for A computer - readable storage medium includes any non
different types of main source code . transitory storage medium , or combination of non - transitory
FIG . 5 is a flow diagram illustrating a method for iden- 55 storage media , accessible by a computer system during use

tifying and replacing inner loops of tiled source code with to provide instructions and / or data to the computer system .
tensor operations executable at a special - purpose hardware Such storage media can include , but is not limited to , optical
accelerator of the processing system of FIG . 1 in accordance media (e.g. , compact disc (CD) , digital versatile disc
with some embodiments . At block 502 , the compiler 120 (DVD) , Blu - Ray disc) , magnetic media (e.g. , floppy disc ,
receives source code 202. At block 504 , the compiler 120 60 magnetic tape , or magnetic hard drive) , volatile memory
receives an indication such as a tile pragma 203 indicating (e.g. , random access memory (RAM) or cache) , non - volatile
that the source code 202 is tileable (e.g. , “ pragma omp tile memory (e.g. , read - only memory (ROM) or Flash memory) ,
sizes (16 , 16 , 16) ”) . In some embodiments , at block 506 , the or microelectromechanical systems (MEMS) -based storage
compiler determines whether it has received a hint 302 media . The computer - readable storage medium in some
indicating that an inner loop of a tile of the source code 202 65 embodiments is embedded in the computing system (e.g. ,
is replaceable with a type of tensor operation executable at system RAM or ROM) , fixedly attached to the computing
the special - purpose hardware accelerator 124. If , at block system (e.g. , a magnetic hard drive) , removably attached to

cess .

a

a

9

a

US 11,347,486 B2
13 14

the computing system (e.g. , an optical disc or Universal tile that can be replaced with a tensor operation execut
Serial Bus (USB) -based Flash memory) , or coupled to the able at a special - purpose hardware accelerator of the
computer system via a wired or wireless network (e.g. , processing system ; and
network accessible storage (NAS)) . generating code that replaces the sequence of instructions

In some embodiments , certain aspects of the techniques 5 of the compiler - generated code with the tensor opera
described above are implemented by one or more processors tion in response to determining that the sequence of of a processing system executing software . The software instructions can be replaced with the tensor operation . includes one or more sets of executable instructions stored 2. The method of claim 1 , further comprising : or otherwise tangibly embodied on a non - transitory com generating a wrapper to invoke execution of the tensor puter - readable storage medium . The software can include 10
the instructions and certain data that , when executed by the operation at a special - purpose hardware accelerator of

the processing system . one or more processors , manipulate the one or more pro
cessors to perform one or more aspects of the techniques 3. The method of claim 1 , wherein generating code
described above . The non - transitory computer - readable stor comprises :
age medium can include , for example , a magnetic or optical 15 replacing an inner loop of the tile in response to dimen
disk storage device , solid state storage devices such as Flash sions and data types of a sequence of instructions of the
memory , a cache , random access memory (RAM) or other inner loop matching dimensions and data types of a
non - volatile memory device or devices , and the like . The tensor operation executable by the special - purpose
executable instructions stored on the non - transitory com hardware accelerator .
puter - readable storage medium are in source code , assembly 20 4. The method of claim 1 , further comprising :
language code , object code , or other instruction format that receiving a hint in the source code indicating that an inner
is interpreted or otherwise executable by one or more loop of a tile is replaceable with a type of tensor
processors . operation ; and

Note that not all of the activities or elements described in response to receiving the hint and in response to
above in the general description are required , that a portion 25 dimensions and data types of the sequence of instruc
of a specific activity or device are not necessarily required , tions of the inner loop matching dimensions and a data
and that one or more further activities could be performed , type of a tensor operation of the type indicated by the
or elements included , in addition to those described . Still hint , generating code replacing the inner loop with the
further , the order in which activities are listed are not type of tensor operation indicated by the hint .
necessarily the order in which they are performed . Also , the 30 5. The method of claim 1 , further comprising :
concepts have been described with reference to specific identifying as an imperfect tile a sequence of instructions
embodiments . However , one of ordinary skill in the art of an inner loop of a tile that does not match dimensions
appreciates that various modifications and changes can be and data types of a tensor operation executable by the
made without departing from the scope of the present special - purpose hardware accelerator .
disclosure as set forth in the claims below . Accordingly , the 35 6. The method of claim 5 , further comprising :
specification and figures are to be regarded in an illustrative generating code to invoke a general - purpose processor of
rather than a restrictive sense , and all such modifications are the processing system to execute the imperfect tile .
intended to be included within the scope of the present 7. The method of claim 1 , wherein the tensor operation is
disclosure . an aggregate instruction comprising a general matrix to

Benefits , other advantages , and solutions to problems 40 matrix multiplication .
have been described above with regard to specific embodi- 8. A method comprising :
ments . However , the benefits , advantages , solutions to prob- responsive to receiving , at a compiler of a processing
lems , and any feature (s) that could cause any benefit , system , an indication that source code comprises a tile
advantage , or solution to occur or become more pronounced representing one or more functions of the source code
are not to be construed as a critical , required , or essential 45 that perform a memory access to a block of data ,
feature of any or all the claims . Moreover , the particular comparing an inner loop of the tile to tensor operations
embodiments disclosed above are illustrative only , as the executable by a special - purpose hardware accelerator
disclosed subject matter can be modified and practiced in of the processing system ; and
different but equivalent manners apparent to those skilled in in response to the inner loop of the tile matching a tensor
the art having the benefit of the teachings herein . No 50 operation executable by the special - purpose hardware
limitations are intended to the details of construction or accelerator , generating enhanced code that replaces the
design herein shown , other than as described in the claims inner loop of the tile with the tensor operation to invoke
below . It is therefore evident that the particular embodiments the special - purpose hardware accelerator .
disclosed above can be altered or modified and all such 9. The method of claim 8 , wherein the inner loop com
variations are considered within the scope of the disclosed 55 prises a first sequence of instructions that matches dimen
subject matter . Accordingly , the protection sought herein is sions and data types of the tensor operation .
as set forth in the claims below . 10. The method of claim 9 , wherein the tile further

comprises a second sequence of instructions that does not
What is claimed is : match dimensions and data types of the tensor operation .
1. A method comprising : 11. The method of claim 10 , further comprising generat
in response to receiving an indication that source code to ing code to invoke a general - purpose processor of the

be compiled at a processing system is tileable such that processing system to execute the second sequence of
a tile representing at least one function of the source instructions .
code performs a memory access to a block of data , 12. The method of claim 9 , further comprising :
determining at a compiler of the processing system 65 receiving a hint in the source code indicating that an inner
whether compiler - generated code comprising a plural- loop of a tile is replaceable with a type of tensor
ity of tiles comprises a sequence of instructions for a operation ; and

60

2

10

US 11,347,486 B2
15 16

generating code replacing the inner loop with the type of 16. The processing system of claim 15 , wherein the
tensor operation indicated by the hint . processor is further to :

13. The method of claim 12 , wherein comparing com- compare dimensions and a data type of the sequence of
prises : instructions with tensor operations executable by the in response to receiving the hint , comparing dimensions 5 special - purpose hardware accelerator ; and

and a data type of the first sequence of instructions with replace at least one inner loop in response to the dimen a subset of tensor operations executable by a special sions and data types of the sequence of instructions of purpose hardware accelerator of the processing system the at least one inner loop that match dimensions and specified by the type of tensor operation indicated by
the hint . data types of a tensor operation executable by the

14. A processing system comprising : special - purpose hardware accelerator .
a special - purpose hardware accelerator ; and 17. The processing system of claim 16 , wherein the
a processor configured to : processor is further to :

in response to receiving an indication that compiler execute sequences of instructions of the at least one inner
generated code executing at the processing system is 15 loop that do not match dimensions and data types of
tileable , determine whether a portion of the com tensor operations executable by the special - purpose
piler - generated code for a tile comprises a sequence hardware accelerator .
of instructions that can be replaced with a tensor 18. The processing system of claim 14 , wherein the
operation ; processor is further configured to :

receive a hint in the compiler - generated code indicating 20 in response to receiving the hint , compare dimensions and
that an inner loop of a tile is replaceable with a type a data type of the sequence of instructions with a subset
of tensor operation ; and of tensor operations executable by a special - purpose

replace the portion of the compiler - generated code with hardware accelerator of the processing system specified
the tensor operation in response to determining that by the type of tensor operation indicated by the hint .
the portion can be replaced with the tensor operation . 25 operation is an aggregate instruction comprising a general 19. The processing system of claim 14 , wherein the tensor

15. The processing system of claim 14 , wherein the
special - purpose hardware accelerator is configured to matrix to matrix multiplication .
execute one or more tensor operations .

a
a

