
US010691772B2 

( 12 ) United States Patent ( 10 ) Patent No .: US 10,691,772 B2 
( 45 ) Date of Patent : Jun . 23 , 2020 Greathouse 

2007/0198621 A1 * 8/2007 Lumsdaine ( 54 ) HIGH - PERFORMANCE SPARSE 
TRIANGULAR SOLVE ON GRAPHICS 
PROCESSING UNITS 2011/0307685 Al * 12/2011 Song 

2015/0326245 A1 * 11/2015 Li ( 71 ) Applicant : Advanced Micro Devices , Inc. , Santa 
Clara , CA ( US ) 

GOOF 17/16 
708/200 

G06F 17/10 
712/16 

HO3M 7/30 
707/693 

GO6F 17/16 
G06F 9/48 

G06F 17/16 

2019/0042542 A1 * 2/2019 Narayanamoorthy 
2019/0325005 A1 * 10/2019 Greathouse 
2020/0034405 A1 * 1/2020 Hamidouche ( 72 ) Inventor : Joseph Lee Greathouse , Austin , TX 

( US ) 
OTHER PUBLICATIONS ( 73 ) Assignee : Advanced Micro Devices , Inc. , Santa 

Clara , CA ( US ) 

( * ) Notice : Subject to any disclaimer , the term of this 
patent is extended or adjusted under 35 
U.S.C. 154 ( b ) by 0 days . 

D. Erguiz , E. Dufrechou , P. Ezzatti , “ Assessing Sparse Triangular 
Linear System Solvers on GPUs ” . Published in th :, Proc . of the 
Workshop on Applications for Multi - Core Architectures ( WAMCA ) , 
2017 . 
E. Anderson , Y. Saad , “ Solving Sparse Triangular Linear Systems 
on Parallel Computers " . Published in the Int'l J. of High Speed 
Computing , 1 ( 1 ) , 73-95 , May 1989 . 

( Continued ) 

( 21 ) Appl . No .: 15 / 958,265 
( 22 ) Filed : Apr. 20 , 2018 

( 65 ) Prior Publication Data 

US 2019/0325005 A1 Oct. 24 , 2019 
Primary Examiner David H Malzahn 
( 74 ) Attorney , Agent , or Firm - Liang & Liang , PC 

( 51 ) Int . Cl . 
GO6F 17/16 ( 2006.01 ) 
GO6F 9/48 ( 2006.01 ) 

( 52 ) U.S. CI . 
CPC G06F 17/16 ( 2013.01 ) ; G06F 9/48 

( 2013.01 ) 
( 58 ) Field of Classification Search 

None 
See application file for complete search history . 

( 57 ) ABSTRACT 

A method includes storing a sparse triangular matrix as a 
compressed sparse row ( CSR ) dataset . For each factor of a 
plurality of factors in a first vector , a value of the factor is 
calculated by identifying for the factor a set of one or more 
antecedent factors in the first vector , where the value of the 
factor is dependent on each of the one or more antecedent 
factors . In response to a completion array indicating that all 
of the one or more antecedent factor values are solved , the 
value of the factor is calculated based on one or more 
elements in a row of the matrix and a product value 
corresponding to the row . In the completion array , a first 
completion flag for the factor is asserted , indicating that the 
factor is solved . 

( 56 ) References Cited 

U.S. PATENT DOCUMENTS 

6,694,343 B2 * 2/2004 Forrest G06F 17/12 
708/446 

G06F 17/12 
708/620 

2002/0138537 A1 * 9/2002 Forrest 
22 Claims , 11 Drawing Sheets 

computing 
device 
101 

CSR dataset 
321 

input data 
( vectors x , y ) 

322 

completion array 
323 

instructions 
209 

memory 206 

bus 201 

processing 
core 301 

processing 
core 304 

processing 
core 307 

processing 
core 302 

processing 
core 305 

processing 
core 308 

. 
... ana 

processing 
core 303 

processing 
core 306 

processing 
core 309 

processing unit 204 ( 1 ) processing unit 204 ( 2 ) processing unit 204 ( 3 ) 



US 10,691,772 B2 
Page 2 

( 56 ) References Cited 

OTHER PUBLICATIONS 

H. Wang , W. Liu , K. Hou , W.C. Feng , “ Parallel Transposition of 
Sparse Data Structures ” . Published in the Proc . of the Int'l Conf . on 
Supercomputing ( ICS ) , 2016 . 
J. H. Saltz , “ Aggregation Methods for Solving Sparse Triangular 
Systems on Multiprocessors ” . Published in SIAM J. on Scientific 
and Statistical Computing , 11 ( 1 ) , 123-144 , Jan. 1990 . 
J. Park , M. Smelyanskiy , N. Sundaram , P. Dubey , “ Sparsifying 
Synchronization for High - Performance Shared - Memory Sparse Tri 
angular Solve ” . Published in the Proc . of the Intl Conf . on Supercomput 
ing ( ISC ) , 2014 . 
M. Naumov , “ On the Parallel Solution of Sparse Triangular Linear 
Systems ” . Presented at GPU Technology Conference , 2012 . 
M. Naumov , “ Parallel Solution of Sparse Triangular Linear Systems 
in the Preconditioned Iterative Methods on the GPU ” . NVIDIA 
Technology Report NVR - 2011-001 , Jun . 2011 . 

W. Liu , A. Li , J. Hogg , I. S. Duff , B. Vinter , “ A Synchronization 
Free Algorithm for Parallel Sparse Triangular Solves ” . Published in 
the Proc . of the Int'l European Conf . on Parallel and Distributed 
Computing ( EuroPar ) , 2016 . 
Dufrechou , E. , & Ezzatti , P. ( Mar. 2018 ) . Solving sparse triangular 
linear systems in modern GPUs : a synchronization - free algorithm . 
In 2018 26th Euromicro International Conference on Parallel , 
Distributed and Network - based Processing ( PDP ) ( pp . 196-203 ) . 
IEEE . 
International Search Report and Written Opinion of the Interna 
tional Searching Authority , Application No. PCT / US2019 / 014475 
dated Apr. 9 , 2019 . 
Liu , W. , Li , A. , gg , J. D. , Duff , I. S. , & Vinter , B. ( 2017 ) . Fast 
synchronization - free algorithms for parallel sparse triangular solves 
with multiple right - hand sides . Concurrency and Computation : 
Practice and Experience , 29 ( 21 ) , e4244 . 

* cited by examiner 



computing system 100 

U.S. Patent 

communication network 110 

Jun . 23 , 2020 

computing device 101 

computing device 102 

computing device 103 

Sheet 1 of 11 US 10,691,772 B2 

FIGURE 1 



.computing device 101 
U.S. Patent 

input device ( keyboard , touch screen , etc. ) 202 

processing unit ( s ) 204 

display 205 

Jun . 23 , 2020 

bus 201 

Sheet 2 of 11 

memory 206 

network adapter 207 

peripheral devices 208 

instructions 209 

US 10,691,772 B2 

FIGURE 2 



computing device 101 

U.S. Patent 

CSR dataset 321 

input data ( vectors x , y ) 322 

completion array 323 

instructions 209 

memory 206 

Jun . 23 , 2020 

bus 201 

Sheet 3 of 11 

processing core 301 

processing core 304 

processing core 307 

processing core 302 

processing core 305 

processing core 308 

. processing core 303 

processing core 306 

processing core 309 

processing unit 204 ( 1 ) 

processing unit 204 ( 2 ) 

US 10,691,772 B2 

processing unit 204 ( 3 ) 

FIGURE 3 



sparse triangular matrix A 410 

vector x 420 

vector y 430 

U.S. Patent 

o 

row 0 

a 

0 0 0 

x [ 0 ] 

y [ O ] 

411 

row 1 

b 

o 
0 

C 

x [ 1 ] 

y [ 1 ] 

Jun . 23 , 2020 

412 

row 2 

x [ 2 ] 

y [ 2 ] 

414 

413 

row 3 

o 

d / 0 e 0 0 X 

f | 0 | 0g 
0 h 0 pij 

x [ 3 ] 

y [ 3 ] 

415 

Sheet 4 of 11 

row 4 

1 

x [ 4 ] 

y [ 4 ] 

col o col 1 col 2 col 3 col 4 

US 10,691,772 B2 

FIGURE 4A 



U.S. Patent Jun . 23 , 2020 Sheet 5 of 11 US 10,691,772 B2 

dependency 
graph 
450 

x [ 0 ] 

411 412 413 

x [ 1 ] x [ 2 ] X [ 3 ] 

414 415 

x [ 4 ] 

FIGURE 4B 

values : [ a , b , c , d , e , f , g , h , i , j ] 
columns : [ 0 , 0 , 1 , 0 , 2 , 0 , 3 , 1 , 3 , 4 ] 

row_ptrs : [ 0 , 1 , 3 , 5 , 7 , 10 ] 
CSR dataset 321 

completion : [ 0 , 0 , 0 , 0 , 0 ] 
completion array 323 

FIGURE 4C 



U.S. Patent Jun . 23 , 2020 Sheet 6 of 11 US 10,691,772 B2 

vector x 420 { vector x : [ ?o , 1 , X22 X3 , X4 ] ILY 
row_ptrs : [ 0 , 1 , Te 10 ] CSR 

dataset 
321 

columns : [ 0 , 0 , 1 , 0 , 2 , 0 , 3 , 1 , 3 , 4 ] 
completion 

array { completion : [ 0 , , 0 , 0 , 0 ] 
323 

FIGURE 5 



Thread o 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

time 

completion 

read y [ o ] 

read y [ 1 ] 

read y [ 2 ] 

read y [ 3 ] 

read y [ 4 ] 

[ 0 , 0 , 0 , 0 , 0 ] 

601 

U.S. Patent 

read a 

read C 

read e 

read g 

read i 

602 

X [ 0 ] y [ 0 ] / a 

completion [ 0 ] 41 

spin on 
completion [ 0 ] 

spin on 
completion [ 0 ] 

spin on 
completion [ O ] 

spin on 
completion [ 1 ] 

read x [ 0 ] 

read x [ 0 ] 

read x [ 0 ] 

( 1 , 0 , 0 , 0 , 0 ] 

603 

read b 

read d 

read f 

Jun . 23 , 2020 

604 . 

x [ 1 ] + ( y [ 1 ] -bx [ @ ] ) / C x [ 2 ] + ( y [ 2 ] -dx [ 0 ] ) / e x [ 3 ] + ( y [ 3 ] -fx [ 0 ] ) / g 

completion [ 1 ] 42 completion [ 2 ] 42 completion [ 3 ] 42 

read x [ 1 ] 

[ 1 , 2 , 2 , 2 , 0 ] 

605 

read h 

Sheet 7 of 11 

606 

spin on 
completion [ 3 ] 

read x [ 3 ] 

607 

read i 

608 

x [ 4 ] + ( y [ 4 ] -hx [ 1 ] -ix [ 3 ] ) / j 

completion [ 4 ] 43 

609 

[ 1 , 2 , 2 , 2 , 3 ] 

US 10,691,772 B2 

FIGURE 6 



Thread o 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

completion 
U.S. Patent 

702 

solve x [ 0 ] completion [ 0 ] 41 

spin on 
completion [ 0 ] 

spin on 
completion [ 0 ] 

spin on 
completion [ 0 ] 

spin on 
completion [ 1 ] 

[ 0 , 0 , 0 , 0 , 0 ] 

first kernel 711 

703 

solve x [ 1 ] 

solve x [ 2 ] solve x [ 3 ] 

completion [ 1 ] 42 completion [ 2 ] 42 completion [ 3 ] 42 

give up launch child 

( 1 , 0 , 0 , 0 , 0 ] 

Jun . 23 , 2020 

704 

completion [ 0 ] ? 1 completion [ 1 ] 1 completion [ 2 ] 21 completion [ 3 ] > 1 completion [ 4 ] < 1 

exit 

exit 

exit 

exit 

[ 1 , 2 , 2 , 2 , 0 ] 

705 

spin on 
completion [ 1 ] 

second kernel 712 

??? ??? ??? ??? ??? 

? ??? ??? ??? ? 

spin on 
completion [ 3 ] 

Sheet 8 of 11 

706 707 

solve x [ 4 ] 
completion [ 4 ] 3 

[ 1 , 2 , 2 , 2 , 3 ] 

US 10,691,772 B2 

FIGURE 7 



-completion flags 810 

completion array 323 

1 

U.S. Patent 

counter 802 

spin loop 801 

-pointers 811 

limit 803 

CSR dataset 321 

1 

Jun . 23 , 2020 

re 

-matrix elements 812 

child launcher 804 

-y [ n ] 813 

product vector y 430 

solver 805 

-antecedents 814 -solved x [ n ] 815 

factor vector x 420 

Sheet 9 of 11 

x [ n ] completion 
flag 816 

??? ?? ?? 

child launched 817 

thread 800 processing core 301 

memory system 206 

US 10,691,772 B2 

FIGURE 8 



U.S. Patent Jun . 23 , 2020 Sheet 10 of 11 US 10,691,772 B2 

store sparse triangular 
matrix as CSR dataset 

901 

SpTS process 
900 

first SpTS 
complete 

941 
initialize completion flag 

for each factor in 
completion [ ] 

903 

to 
943 

no 

yes initiate thread for 
calculating factor x [ n ] 905 

start child kernel 
939 

child kernel enqueued ? 
937 

yes completion [ n 
is asserted ? 

907 
no 

identify next antecedent 
factor for x [ n ] by next 

non - zero column 
909 

calculate value for the 
factor x [ n ] 

921 

determine value for the completion flag 
923 

antecedent 
index is equal to 
row_ptrs ( n + 1 ) ? 

910 

yes 

no assert completion flag in 
completion [ n ] 

925 yes next non - zero 
column is on main 

diagonal ? 
911 

yes 

exit thread 
933 no 

all parallel 
threads in kernel 

ended ? 
935 

check completion flag for 
antecedent factor 

913 no 
assert child_started 

931 
completion 

flag asserted ? 
915 yes 

no 
launch child 

kernel and enqueue 
929 increment spin 

loop counter 
917 

no 

no yes spin loop 
limit exceeded ? 

919 
child started 

asserted ? 
927 

yes 

FIGURE 9A 



U.S. Patent Jun . 23 , 2020 Sheet 11 of 11 US 10,691,772 B2 

SpTS process 
900 

from 
941 

determine levels for factors in 
a second vector 

943 

calculate a value for each 
factor in the second vector 

945 

second SpTS complete 
947 

FIGURE 9B 



1 
US 10,691,772 B2 

2 
HIGH - PERFORMANCE SPARSE methods , and so forth , in order to provide a good under 

TRIANGULAR SOLVE ON GRAPHICS standing of the embodiments . It will be apparent to one 
PROCESSING UNITS skilled in the art , however , that at least some embodiments 

may be practiced without these specific details . In other 
BACKGROUND 5 instances , well - known components or methods are not 

described in detail or are presented in a simple block A triangular matrix is a type of square matrix that has only diagram format in order to avoid unnecessarily obscuring zero elements above or below the main diagonal of the the embodiments . Thus , the specific details set forth are matrix . A lower triangular matrix has only zero elements merely exemplary . Particular implementations may vary 
above the main diagonal , such that any nonzero elements in the matrix are in the lower triangle , on or below the main 10 from these exemplary details and still be contemplated to be 
diagonal . An upper triangular matrix has only zero elements within the scope of the embodiments . 
below the main diagonal , such that any nonzero elements in A sparse triangular solve ( SpTS ) attempts to solve for 
the matrix are in the upper triangle , on or above the main unknown values in the vector x in the equation Ax = y , where 
diagonal . A triangular matrix can be used to represent a A is a sparse triangular matrix and where y is a vector of 
system of equations in the field of linear algebra . 15 known values . Solving rows in the sparse triangular matrix 

A sparse triangular matrix is a triangular matrix that has in parallel results in a series of data dependencies ; the 
a substantial number of zero elements in the populated solution of each factor x [ n ] in the vector x depends on the 
triangle ; for example , a sparse lower triangular matrix has previous factors x [ 0 ] -x [ n – 1 ] being solved . The solution is 
one or more zero values in its lower triangle . A sparse divisible into a series of levels , where factors in the same 
triangular solve ( SpTS ) is process for solving for the vector 20 level do not depend on each other either directly or transi 
x in the equation Ax = y , where A is a sparse triangular matrix tively and are thus solvable in parallel with each other . One 
with N rows and N columns , x is a vector with N unknown of the primary difficulties of quickly performing a parallel 
values , and y is a vector of N known values . If the only SpTS is finding this data dependency graph for any particu 
non - zero values in the matrix A are on the main diagonal and lar input matrix , particularly when the input matrix contains 
on one side of that diagonal , it is possible to solve for the 25 thousands or millions of rows and columns . Accordingly , 
vector x using substitution . Solving for a vector entry x [ n ] sparse triangular solves can still perform poorly on highly 
relies on having solved all previous vector entries ( e.g. , parallel architectures , such as graphics processing unit 
x [ 0 ] -x [ n - 1 ] ) in the case of forward substitution in a lower ( GPU ) based parallel computing systems . A parallel com 
triangular matrix . However , if the matrix is sparse , some of puting system can determine when to start solving for a 
the triangular matrix values are also zero and it is possible 30 particular factor based on a dependency graph determined 
to solve multiple rows in parallel , on parallel processors . before starting the computation , or by communicating 

between parallel workers when previously calculated results 
BRIEF DESCRIPTION OF THE DRAWINGS are available . 

One approach for performing a SpTS on a parallel com 
The present disclosure is illustrated by way of example , 35 puting system includes first analyzing the input matrix to 

and not by way of limitation , in the figures of the accom determine which rows and factors can be solved in parallel , 
panying drawings . then launching a new kernel for each level that includes a 

FIG . 1 illustrates an embodiment of a parallel computing thread for solving each of the rows in the level in parallel . 
system for performing a sparse triangular solve ( SpTS ) , However , dividing the SpTS into analysis and solution 
according to an embodiment . 40 phases results in a more cumbersome application program 

FIG . 2 illustrates a computing device , according to an ming interface ( API ) in which users additionally invoke the 
embodiment . analysis ( an implementation - level detail ) before they can 

FIG . 3 illustrates multiple processing units and memory in obtain the desired solution . Furthermore , the time taken to 
a computing device , according to an embodiment . perform the analysis can exceed the time taken for calcu 

FIG . 4A illustrates a matrix multiplication of a sparse 45 lating the solutions . Depending on the analyses performed , 
triangular matrix and a vector , according to an embodiment . the analysis can take up to thousands of times longer than the 

FIG . 4B illustrates a dependency graph for a SpTS , solution phase . If the matrix is not used repeatedly , the time 
according to an embodiment . spent performing the analysis may not be amortized . 

FIG . 4C illustrates a compressed sparse row ( CSR ) data In some cases , a factor in a given level may depend on a 
set and a completion array , according to an embodiment . 50 subset of factors in the previous level that have already been 

FIG . 5 illustrates elements in a CSR data set for identi solved ; thus , solving of the factor should be able to proceed . 
fying completion flags for each factor in a vector , according However , solving of the factor does not proceed while other 
to an embodiment . factors remaining unsolved in the previous level are pre 

FIG . 6 illustrates a timeline of events in a SpTS , according venting the previous level from completing . Thus , some 
to an embodiment . 55 parallelism can be lost when dividing SpTS calculations into 

FIG . 7 illustrates a timeline of events in a SpTS , according levels . 
to an embodiment . In one approach that does not require a separate analysis 

FIG . 8 is a block diagram illustrating modules for per stage , a SpTS can be performed that dynamically manages 
forming a SpTS in a processing core , according to an the parallel workers during a solution stage by operating on 
embodiment . 60 a sparse triangular matrix that is stored according to a 

FIGS . 9A and 9B are flow diagrams illustrating a process Compressed Sparse Column ( CSC ) format . However , many 
for performing a SpTS , according to an embodiment . applications store sparse triangular matrices in a Com 

pressed Sparse Row ( CSR ) format , and transposing a CSR 
DETAILED DESCRIPTION dataset to a CSC format can consume substantial time and 

65 memory resources . 
The following description sets forth numerous specific In one embodiment , a parallel computing system can 

details such as examples of specific systems , components , perform a SpTS on a matrix that is stored in a CSR format 



US 10,691,772 B2 
3 4 

by updating a completion array that indicates when factors FIG . 2 illustrates an embodiment of a computing device 
of the vector x have been solved and are available for use in 101 in which a high - performance parallel SpTS mechanism 
subsequent calculations . A kernel launched by the comput is implemented . In general , the computing device 101 is 
ing system executes a thread for calculating each factor x [ n ] embodied as any of a number of different types of devices , 
in vector x using the elements in the corresponding row n of 5 including but not limited to a laptop or desktop computer , 
the matrix . In each thread , a spin loop is executed to mobile device , server , etc. The computing device 101 
repeatedly monitor a completion flag in the completion array includes a number of components 202-208 that communi 
to determine whether the antecedent factors ( representing cate with each other through a bus 201. In computing device 
input variables for row n ) on which the factor x [ n ] depends 101 , each of the components 202-208 is capable of com 
have been solved . When an antecedent factor has been 10 municating with any of the other components 202-208 either directly through the bus 201 , or via one or more of the other solved , it is used to calculate a part of the value of factor components 202-208 . The components 201-208 in comput x [ n ] . ing device 101 are contained within a single physical To reduce memory contention caused by spin looping on enclosure , such as a laptop or desktop chassis , or a mobile the values in the completion array , if the number of iterations 15 phone casing . In alternative embodiments , some of the of a spin loop or an amount of time spent spin looping components of computing device 101 are embodied as 
exceeds a limit , the thread launches a dependent child kernel peripheral devices such that the entire computing device 101 
that is enqueued to start after completion of the current does not reside within a single physical enclosure . 
kernel . After the remaining threads have completed ( i.e. , The computing device 101 also includes user interface 
more factors have been solved ) , the dependent child kernel 20 devices for receiving information from or providing infor 
starts a new thread to resume spin looping on the same value mation to a user . Specifically , the computing device 101 
in the completion array . includes an input device 202 , such as a keyboard , mouse , 

This high - performance SpTS mechanism thus allows a touch - screen , or other device for receiving information from 
parallel computing system to perform a SpTS on sparse the user . The computing device 101 displays information to 
triangular matrix stored in the CSR format without perform- 25 the user via a display 205 , such as a monitor , light - emitting 
ing an expensive transpose operation for converting it to diode ( LED ) display , liquid crystal display , or other output 
another format such as CSC . Because it does not group rows device . 
and their corresponding factors into levels , the mechanism Computing device 101 additionally includes a network 
does not create false dependencies and is thus able to find adapter 207 for transmitting and receiving data over a wired 
more dynamic parallelism in performing the SpTS . The 30 or wireless network . Computing device 101 also includes 
high - performance SpTS mechanism does not require a sepa one or more peripheral devices 208. The peripheral devices 
rate analysis stage ; each parallel worker begins solving a 208 may include mass storage devices , location detection 
row to calculate a value for its corresponding factor when ices , sensors , input devices , or other types of devices 
the antecedent factors are already known or become avail used by the computing device 101 . 
able from solving previous rows . A mechanism that allows 35 Computing device 101 includes one or more processing 
spin loops to time - out and resume later by launching a child units 204 , which in the case of multiple processing units 204 
kernel reduces memory contention due to the spin looping are capable of operating in parallel . The processing unit ( s ) 
on multiple completion flags in the completion array . In one 204 are configured to receive and execute instructions 209 
embodiment , this high - performance SpTS mechanism per that are stored in the memory subsystem 206. In one 
forms thousands of times faster , in some cases , than a SpTS 40 embodiment , each of the processing unit ( s ) 204 includes 
mechanism that performs the analysis and solution in sepa multiple processing cores that reside on a common inte 
rate stages . grated circuit substrate . Memory subsystem 206 includes 

FIG . 1 illustrates an embodiment of a parallel computing memory devices used by the computing device 101 , such as 
system 100. Computing system 100 includes multiple com random - access memory ( RAM ) modules , read - only 
puting devices 101-103 that are connected to each other via 45 memory ( ROM ) modules , hard disks , and other non - transi 
a communication network 110. Each of the computing tory computer - readable media . 
devices 101-103 has processing and memory storage capa Some embodiments of computing device 101 may include 
bilities . In one embodiment , the computing system 100 is fewer or more components than the embodiment as illus 
contained within a single physical enclosure , and the com trated in FIG . 2. For example , certain embodiments are 
munication network 110 is a bus or system interconnect 50 implemented without any display 205 or input devices 202 . 
connecting the computing devices 101-103 within the enclo Other embodiments have more than one of a particular 
sure . For example , the computing devices 101-103 can component ; for example , an embodiment of computing 
include processing units such as GPUs , central processing device 101 could have multiple buses 201 , network adapters 
units ( CPUs ) , field programmable gate arrays ( FPGAs ) , etc. 207 , memory devices 206 , etc. 
on the same board or on separate carrier boards that are 55 FIG . 3 illustrates a block diagram including selected 
connected to each other via a backplane . In one embodi components of the computing device 101 , according to an 
ment , the components in the computing system 100 are embodiment . FIG . 3 illustrates the processing units 204 , 
contained in separate physical enclosures and are geographi which are each connected to the memory 206 via bus 201 . 
cally distributed . For example , the computing devices 101 While FIG . 3 illustrates one of the computing devices 101 , 
103 can represent individual servers , personal computers , 60 other computing devices ( e.g. , 102-103 ) in the computing 
mobile devices , etc. that are connected to each other via a system 100 include similar components . 
wide - area network ( WAN ) such as the Internet , a local - area In one embodiment , each of the processing units 204 is a 
network ( LAN ) , wireless network , or other communication GPU , CPU , FPGA , or other processing device , and is 
network 110. In one embodiment , the computing devices located on a separate integrated circuit die from other 
101-103 represent the same type or similar types of devices ; 65 processing units in the set of processing units 204. Each of 
alternatively , the computing devices 101-103 are different the processing units 204 includes a set of processing cores 
types of devices . on a single integrated circuit die . Processing unit 204 ( 1 ) 



US 10,691,772 B2 
5 6 

includes processing cores 301-303 , processing unit 204 ( 2 ) In the dependency graph 450 , the calculation of a value 
includes processing cores 304-306 , and processing unit for factor x [ 0 ] has no dependencies and is calculated first 
204 ( 3 ) includes processing cores 307-309 . Each of the without waiting for any other factors to be solved . Solving 
processing cores is configured to execute a thread in a of each of the factors x [ 1 ] , x [ 2 ] , and x [ 3 ] is dependent on 
computer program , as directed by the instructions 209. The 5 x [ 0 ] via dependencies 411 , 412 , and 413 , respectively ; 
processing cores 301-309 are capable of executing instruc therefore , these calculations are started when x [ 0 ] is solved 

and becomes available . The calculations executed in the tions independently from each other , and are thus capable of 
executing parallel threads in a SpTS process , where each of respective separate threads for solving x [ 1 ] , x [ 2 ] , and x [ 3 ] 
the parallel threads is executed in one of the processing cores are performed at least partially in parallel , but can take 
301-309 and calculates a value for one of the factors in the 10 different amounts of time to finish calculating their respec tive factors . The solving of x [ 4 ] is dependent on x [ 1 ] and vector x . 

In addition to a set of instructions 209 for performing the x [ 3 ] via dependencies 414 and 415 , respectively . Thus , the 
full calculation of x [ 4 ] is performed when both of x [ 1 ] and high - performance SpTS of the equation Ax = y , the memory x [ 3 ] are available . In one embodiment , each of multiple 206 also stores the sparse triangular matrix A in the form of 15 threads solves for one of the factors x [ 0 ] -x [ 4 ] . In alternative a CSR dataset 321 and input data 322 , which includes the embodiments , a parallel workgroup including multiple 

vector x of unknown factors to be solved and the vector y of threads solves one factor , a single thread solves for multiple 
known product values . The memory 206 also stores a factors , or multiple threads solve for multiple factors in the 
completion array 323 that includes a completion flag for vector x 420 . 
each of the factors in the vector x , with each completion flag 20 FIG . 4C illustrates a Compressed Sparse Row ( CSR ) 
indicating whether its corresponding factor has been solved . dataset 321 that represents the sparse triangular matrix A 
In one embodiment , the information in the memory 206 is 410 , according to an embodiment . The CSR dataset 321 
stored on a single memory device or subsystem in the includes three arrays : a values array ( values [ ] ) , a columns 
computing device 101. In alternative embodiments , the array ( columns [ ] ) , and a row pointers array ( row_ptrs [ ] ) . 
information is distributed across multiple memory devices in 25 The values array stores the non - zero elements of the matrix 
the same computing device 101 or in multiple computing A 410. The elements are stored in order from left to right 
devices ( e.g. , 101-103 ) . Accordingly , a memory system for ( column 0 to column 4 within each row ) and from top to 
the broader computing system 100 can include memory bottom ( row 0 to row 4 ) in the matrix . The columns array 
devices distributed across multiple computing devices 101 identifies , for each of the elements in the values array , a 
103 . 30 column of the matrix in which the element is located . The 

FIG . 4A illustrates the multiplication of a sparse triangu column array has the same number of entries as the values 
lar matrix 410 with a vector x 420 that results in a product array ; each element of the column array identifies the 
vector y 430 ( i.e. , Ax = y ) , according to an embodiment . The column for a corresponding element in the values array 
matrix A 410 is used as an input for a SpTS , and is a lower having the same array index . The row pointers array iden 
triangular matrix that includes 10 non - zero elements . The 35 tifies which elements are in each row of the matrix . Spe 
main diagonal of the matrix A 410 includes the elements a , cifically , each value in the row pointers array is an index 
c , e , g , andj . Since matrix A 410 is a lower triangular matrix , pointing into the values array and the columns array at the 
it can be solved with forward - substitution . This means that first value in each row . The final value in the row pointers 
some rows will be solved using the results of previously array is one more than the highest index in the values array 
solved higher - up rows as input . Accordingly , the arrows 40 or columns array . 
411-415 represent these dependencies in the forward - sub According to one approach for performing a SpTS for a 
stitution process . For example , solving the factors x [ 1 ] , x [ 2 ] , matrix stored in the CSR format , a thread 0 for solving x [ 0 ] 
and x [ 3 ] corresponding to respective rows 1 , 2 , and 3 notifies the dependent threads 1 , 2 , and 3 ( for solving x [ 1 ] , 
depends on the factor x [ 0 ] associated with row 0 being x [ 2 ] , and x [ 3 ] , respectively ) when x [ 0 ] is solved . However , 
solved . These dependencies are indicated by the arrows 411 , 45 when the CSR format is used , such notification would entail 
412 , and 413 , respectively . For example , the dependency walking the columns array to find all entries containing “ O ' , 
arrow 411 indicates that calculating the value of the term which indicates that the row has a non - zero value in column 
bx [ 0 ] from row 1 depends on solving for x [ 0 ] using the term 0 , and therefore has a data dependency on x [ 0 ] . After finding 
ax [ 0 ] in row 0. Dependency arrows 414 and 415 indicate a ' O ' entry in the columns array , thread ( ) would also 
that solving factor x [ 4 ] via row 4 depends on solving the 50 determine which dependent thread to wake by performing a 
x [ 1 ] and x [ 3 ] factors , respectively , which correspond to the search of the row pointers array to determine which two 
non - zero elements c and g . The solved x [ 1 ] and x [ 3 ] factors indices in the row pointers array the ' o ' entry from the 
are used to calculate the terms hx [ 1 ] and ix [ 3 ] when solving columns array lies between . The walking of the columns 
for the factor x [ 4 ] . While the high - performance SpTS array and searching of the row pointers array is computa 
mechanism is described herein as being performed for 55 tionally expensive and results in an infeasible slowdown for 
solving a lower triangular matrix , the mechanism can be a high - performance SpTS . 
similarly used to perform backwards - substitution to solve an FIG . 4C additionally illustrates a completion array 323 
upper triangular matrix . that is used to avoid the computationally expensive walking 

FIG . 4B illustrates a dependency graph 450 for perform of the columns array and searching of the row pointers array , 
ing a SpTS of the matrix A 410. Each of the nodes in the 60 according to an embodiment . Instead of each completed 
graph represents one of the factors in vector x to be solved . thread waking its dependent threads , each of the waiting 
The dependencies 411-415 in FIG . 4B correspond respec dependent threads checks the completion array 323 to deter 
tively to the similarly numbered dependencies 411-415 on mine whether its antecedent factors have been solved . The 
FIG . 4A . The calculation of each of the factors x [ 0 ] -x [ 4 ] is completion array 323 stores a completion flag for each of the 
performed by a separate thread , where each of the separate 65 factors in the vector x 420 ( and thus for each of the rows in 
threads is executed in a separate processing core ( e.g. , one the matrix A 410 ) . Each factor in the vector x 420 corre 
of the processing cores 301-309 ) . sponds to a flag in the completion array having the same 



10 

US 10,691,772 B2 
7 8 

index ( i.e. , X [ n ] corresponds to completion [ n ] ) . Before start At time 602 , each of the threads 1-3 ( corresponding 
ing the SpTS , all of the flags in the completion array are respectively to factors x [ 1 ] -x [ 3 ] ) executes a spin loop to 
initialized to “ O ' , indicating that none of the factors have yet monitor the state of the completion flag at index 0 of the 
been solved . Whenever a thread finishes writing a solved completion array ( i.e. , completion [ 0 ] ) , based on its deter 
value for one of the factors in the vector x 420 , the thread 5 mination as illustrated in FIG . 5. Thread 4 corresponding to 
also asserts the corresponding completion flag in the factor x [ 4 ] executes a spin loop to monitor the state of completion array 323 to indicate that the solved value is completion [ 1 ] according to its determination as illustrated in 
available for use in subsequent calculations . In one embodi FIG . 5. During this time 602 , thread 0 has no dependencies ment , the completion flag is deasserted when its value is ( as previously discussed with reference to FIG . 5 ) and zero , and is asserted when its value is a non - zero value . proceeds to solve for x [ 0 ] . Thread 0 divides y [ 0 ] by a and FIG . 5 illustrates the use of elements in the CSR data set stores the result as x [ 0 ] in vector x 420. After storing the arrays to determine which completion flags in the comple result , thread ( asserts completion [ 0 ] by writing a non - zero tion array 323 to monitor for each of the factors of vector x 
420 that are being solved , according to an embodiment . In value into completion [ 0 ] . 
vector x 420 , each of the factors x [ 0 ] -x [ 4 ] corresponds to 15 At time 603 , the completion flag at completion [ 0 ] is in an 
one of the rows of matrix A 410 , and thus corresponds in turn asserted state . For each of threads 1-3 , the next column 
to one of the row pointer elements in the row pointers array . element in the column array is on the main diagonal ( see 
Accordingly , a thread being executed for solving one of the FIG . 5 ) ; therefore , all of the antecedent factor values for 
factors identifies a row pointer element that has the same threads 1-3 have been solved . Threads 1-3 exit their respec 
index in the row pointer array as the factor to be solved . The 20 tive spin loops and proceed with solving their respective 
row pointer element is used as an index to locate a column factors . Each thread 1-3 reads the newly calculated value for 
element in the column array , which identifies the first x [ 0 ] along with the matrix element ( e.g. , b , d , f ) by which 
non - zero value in the corresponding row of matrix A 410 . x [ 0 ] is multiplied in the equation Ax = y . At time 604 , the 
The thread uses the column element as an index to locate a threads 1-3 solve for the factors x [ 1 ] -x [ 3 ] based on x [ 0 ] , the 
completion flag in the completion array 323 . 25 matrix element ( b , d , f ) and a product value ( y [ 1 ] -y [ 3 ] ) for 

After identifying the completion flag , the thread executes the row , respectively . The threads 1-3 store the resulting 
a spin loop that repeatedly checks the completion flag until calculated values of x [ 1 ] -x [ 3 ] in vector x 420 . 
the completion flag is asserted . When the completion flag is After storing the calculated values , each thread 1-3 asserts 
asserted , the thread identifies the next completion flag to the completion flag corresponding to its factor x [ 1 ] -x [ 3 ] to 
monitor by finding the next column element in the column 30 indicate that these factors are solved . Thus , threads 1 , 2 , and 
array ( e.g. , by incrementing the index by one ) . The thread 3 assert completion [ 1 ] , completion [ 2 ] , and completion [ 3 ] , 
executes a spin loop to monitor the next completion flag . respectively , by storing a non - zero value at these locations . 
This process repeats until the next column element is equal At time 605 , completion [ 1 ] is in the asserted state ; there 
to the index of the factor and thus corresponds to an element fore , thread 4 stops spin looping on completion [ 1 ] and reads 
on the main diagonal of the matrix A 410. Each of the 35 the newly calculated value for x [ 1 ] , along with the matrix 
monitored completion flags indicates whether one of the element h by which x [ 1 ] is multiplied in the equation Ax = y . 
antecedent factors ( on which the solution of the factor At time 606 , thread 4 identifies the next column in the matrix 
depends ) has been solved . Thus , when the main diagonal is row that contains a non - zero element . In the columns array , 
reached , all of the antecedent factors for the row have been the position columns [ 8 ] ( adjacent to the initial position 
solved and the thread is able to solve its own factor . 40 columns [ 7 ] for row 4 ) indicates that the next non - zero 
When performing this process for factor x [ 0 ] , the corre element in row 4 is an off - diagonal element in column 3 . 

sponding column element with a value of ' O ' already rep Therefore , thread 4 begins spin looping to monitor the state 
resents an element on the main diagonal . Therefore , the of the completion flag at completion [ 3 ] , which corresponds 
thread is already able to solve for x [ 0 ] without having to to column 3 . 
check any completion flag . At time 607 , x [ 3 ] was previously solved and its comple 

FIG . 6 illustrates a timeline of events in the SpTS , tion flag asserted by thread 3 at time 603. Also , the next 
according to an embodiment . As illustrated in FIG . 6 , each column in row 4 that has a non - zero value ( as specified by 
factor in the vector x is solved by one of the parallel threads columns [ 9 ] ) is on the main diagonal of the matrix A 410 . 
0-4 . In one embodiment , the threads 0-4 are executed in one Therefore , the completion array 323 indicates that all of the 
or more processing units ( e.g. , processing unit ( s ) 204 ) , with 50 antecedent factors have been solved . In response , thread 4 
each thread executed in one of the processing cores ( e.g. , exits the spin loop and begins reading the values x [ 3 ] and i 
one of cores 301-309 ) . In alternative embodiments , each that it will use for calculating the value of its factor x [ 4 ] . At 
factor can be solved by multiple threads of a workgroup , or time 608 , thread 4 calculates the value of factor x [ 4 ] based 
a workgroup can solve multiple factors . In the timeline of on the antecedent factors x [ 1 ] and x [ 2 ] , matrix elements h , 
FIG . 6 , time progresses from top to bottom . The right portion 55 i , and j , and product value y [ 4 ] . Having solved for x [ 4 ] , 
of the diagram shows the values of the completion flags in thread 4 asserts the completion flag at completion [ 4 ] by 
the completion array 323 at different times during the SpTS storing a non - zero value at completion [ 4 ] . 
process . In one embodiment , the threads 0-4 assert their respective 

At time 601 , the completion array 323 is initialized with completion flags in the completion array 323 by writing a ‘ l ’ 
all completion flags set to ' O’to indicate that no factors have 60 or other fixed number as the non - zero value . Alternatively , 
yet been solved . Threads 0 , 1 , 2 , 3 , and 4 read product values as illustrated in FIG . 6 , the updating of the completion array 
y [ 0 ] , y [ 1 ] , y [ 2 ] , y [ 3 ] , and y [ 4 ] from vector y 430 and 323 is used to generate level set information . Instead of 
elements a , c , e , g , and j from the main diagonal of the simply asserting the completion flag with a ' l ' value , the 
matrix , respectively . The product values from vector y 430 asserting thread determines a value of the completion flag 
and the main diagonal elements are values that are already 65 for its solved factor by incrementing a highest value among 
known that will be used by each thread to solve its factor the completion flags of the antecedent factors . The thread 
from vector x 420 . then asserts the completion flag for the factor by storing the 

45 



US 10,691,772 B2 
9 10 

determined value of the completion flag in the completion terminating its spin loop and checks a global “ child 
array 323 at the position corresponding to the factor . _launched ” variable that indicates whether a child kernel has 
As an example , for each of these threads 1-3 , the highest already been launched by any other thread . If the " child 

completion flag value for an antecedent factor ( i.e. , x [ 0 ] ) is _launched ” variable is asserted , then a child kernel has 
1. Incrementing this results in a new completed flag value of 5 already been launched by another thread , and thread 4 exits 
' 2 ' . The threads 1 , 2 , and 3 at time 604 thus assert the without launching a child kernel . If the “ child_launched ” 
completion flags using the value “ 2 ” for their respective variable is not asserted , then no child kernel has previously 
factors x [ 1 ] , x [ 2 ] , and x [ 3 ] . When thread 4 asserts a comple been launched and thread 4 launches the second kernel 712 , 
tion flag for solved factor x [ 4 ] at time 608 , the highest which is enqueued to start after the first kernel 711 com 
completion flag among the completion flags corresponding 10 pletes ( i.e. , when all other threads in the kernel 711 are 
to the antecedent factors x [ 1 ] and x [ 2 ] has a value of “ 2 ' . completed ) . In connection with launching kernel 712 , thread 
Therefore , thread 4 asserts the completion flag for x [ 4 ] using 4 asserts the " child_launched ” variable to prevent other 
the incremented value of ' 3 ' . threads in the first kernel 711 from attempting to launch a 

At the end of the SpTS ( time 609 ) , the completion array child kernel in this manner . Thread 4 then exits . By this 
323 with all its completion flag elements asserted indicates 15 mechanism , threads that execute too many iterations or 
a level set that can optionally be used to determine an order spend too much time spin looping stop accessing the 
for subsequently solving factors of a new vector x . Con memory system temporarily until more progress is made . 
tinuing the previous example , the completion array includ At the end of time 703 , when all of the parallel threads 0-4 
ing elements [ 1 , 2 , 2 , 2 , 3 ] indicates that x [ 0 ] is solved first have completed , the first kernel 711 exits . At time 704 , the 
in level 1 , followed by x [ 1 ] , x [ 2 ] , and x [ 3 ] solved in parallel 20 second kernel 712 is launched , and parallel threads 0-4 are 
in level 2 , and followed finally by solving x [ 4 ] in level 3 . invoked again for the same factors x [ 0 ] -x [ 4 ] , respectively . 
The completion array 323 is thus used to efficiently generate The global “ child_launched ” variable is initialized to the 
level set information that can be used in subsequent calcu deasserted state in connection with the launching of the child 
lations for the same matrix A 410 . kernel 712. The threads 0-4 check the completion flags for 

FIG . 7 illustrates a timeline of events for performing an 25 their respective factors x [ 0 ] -x [ 4 ] . Since the completion array 
embodiment of a SpTS in which threads executing spin 323 indicates that factors x [ 0 ] -x [ 3 ] have already been 
loops can time out and launch child kernels to reduce solved , threads 0-3 exit . 
memory contention caused by the spin looping . Particularly However , the completion flag at complete [ 4 ] is deasserted 
in cases where the matrix A has a large number of rows and indicates that factor x [ 4 ] has not been solved . Thread 4 
and / or long chains of dependencies , spin looping to repeat- 30 determines whether the antecedent factors x [ 1 ] and x [ 3 ] 
edly check the completion status of a large number of have been solved by executing a spin loop to check the 
corresponding factors can cause a significant amount of completion flags for x [ 1 ] ( at completion [ 1 ] ) and for x [ 3 ] ( at 
memory contention due to the repeated memory accesses for completion [ 3 ] ) . At time 705 , thread 4 determines that x [ 1 ] 
reading the completion array 323. The memory contention has already been solved based on its completion flag at 
slows down threads that are attempting to solve their factors 35 completion [ 1 ] . At time 706 , thread 4 determines that x [ 3 ] 
and make forward progress in the SpTS , further prolonging has already been solved based on its completion flag at 
the time spent spin looping . To reduce the overall number of completion [ 3 ] . Since all of the antecedent factors on which 
spin looping cycles , each thread performing a spin loop the solution of factor x [ 4 ] depends have been solved , thread 
terminates the spin loop if the number of iterations or time 4 proceeds to solve x [ 4 ] at time 707. Once all of the factors 
spent spin looping exceeds a predetermined threshold . The 40 x [ 0 ] -x [ 4 ] have been solved , no more child kernels will be 
spin looping is resumed in a corresponding thread of a child launched and the SpTS is completed . 
kernel after more progress in the SpTS has been made ( i.e. , FIG . 8 illustrates a block diagram of modules in a 
more factors are solved ) . processing core 301 for executing a high - performance SpTS 

As illustrated in FIG . 7 , each of the threads 0-4 is on a CSR dataset 321 , according to an embodiment . In one 
executed in a first kernel 711 to solve for one of the factors 45 embodiment , the modules 801-805 in the processing core 
x [ 0 ] -x [ 4 ] in the vector x 420. Each thread 0-4 begins by 301 are implemented using hardened circuit modules ; in 
checking the completion array to determine whether its alternative embodiments , the modules 801-805 are imple 
respective factor x [ 0 ] -x [ 4 ] has already been solved by a mented using programmable logic circuits ( e.g. , when pro 
previous thread . If the factor has already been solved , the cessing core 301 is implemented using an FPGA or other 
thread exits immediately . At time 702 , the completion array 50 programmable device ) , software modules , or a combination 
323 includes only “ O'elements and thus indicates that none of hardware , software , programmable logic , etc. In one 
of the factors in vector x 420 have been solved . Accordingly , embodiment , the modules 801-805 perform the operations 
threads 1-3 execute spin loops to monitor complete [ 0 ] for executed in a thread 800 for solving a factor x [ n ] , which 
the solving of x [ 0 ] , while thread 4 executes a spin loop to represents the nth element in the vector x . In one embodi 
monitor complete [ 1 ] for the solving of x [ 1 ] . Thread 0 solves 55 ment , thread 800 functions in a similar manner as threads 
for x [ 0 ] and asserts the associated completion flag at 0-4 as described with reference to FIG . 6 or FIG . 7 . 
completion [ 0 ] . The spin loop module 801 reads pointers 811 ( from the 

Each of the threads 1-3 continues executing its spin loop row pointers array and columns array ) to determine the 
until the completion flag being monitored by the spin loop appropriate completion flags to monitor in the completion 
is asserted , or the number of iterations of the spin loop 60 array 323 , as previously described with reference to FIG . 5 , 
exceeds a predetermined limit . At time 703 , the completion and executes a spin loop to repeatedly check the completion 
flag for x [ 0 ] at completion [ 0 ] is in the asserted state . Thus , flags 810 from the completion array 323. The spin loop 
the threads 1-3 begin solving their respective factors x [ 1 ] module 801 thus determines the availability of any anteced 
x [ 3 ] before their spin loop iterations exceed the predeter ent factors on which the factor x [ n ] to be solved depends . 
mined limit . However , thread 4 executes a spin loop on the 65 In one embodiment , the thread 800 reduces memory 
completion flag for x [ 1 ] that exceeds the predetermined contention by exiting and launching a child kernel when the 
iteration limit before x [ 1 ] is solved . Thread 4 gives up by spin looping has taken too much time or has been executed 



US 10,691,772 B2 
11 12 

for too many iterations . Each iteration of the spin loop at block 933 since x [ n ] is already solved . If completion [ n ] is 
executed by module 801 is counted by the counter 802. The zero ( i.e. , deasserted ) , the process 900 continues at block 
number of iterations ( or alternatively , the time spent spin 909 . 
looping ) is compared to a predetermined limit 803 and , The value of x [ n ] is data dependent on each of a set of one 
when the number of iterations of the spin loop ( or time spent 5 or more antecedent factors in the vector x 420 ; that is , the 
spin looping ) exceeds the limit 803 , the child launcher 804 values of the antecedent factors are used to calculate the 
checks the “ child_launched ” variable 817. If the “ child_ value of x [ n ] . Thus at block 909 , the spin loop module 801 
launched ” variable 817 indicates that a child kernel has not identifies a next antecedent factor for monitoring based on 
been launched by another thread , the child launcher 804 the row pointer array and the column array in the CSR 
launches a child kernel 712 that is enqueued to start after all 10 dataset 321. A row pointer having the same index n as the 
the threads in the current kernel 711 are completed . The factor x [ n ] is used as an index identifying a position in the 
thread 800 thus ceases spin looping in response to exceeding columns array . The identified position in the columns array 
the limit 803 , then restarts spin looping in the child kernel identifies the column of a non - zero element in the row n of 
712 after more progress has been made in the SpTS ( i.e. , the matrix A 410 corresponding to the factor x [ n ] . As an 
more factors have been solved ) . 15 example with reference to FIG . 5 , for the factor x [ 4 ] , 

The solver module 805 calculates a value for the factor row_ptrs [ 4 ] has a value of “ 7 ' , and columns [ 7 ] has a value 
x [ n ] in response to the spin loop module 801 determining of ‘ 1 ' . This indicates that in row 4 of the matrix A 410 , a 
that all of the antecedent factors for x [ n ] have been solved , non - zero element is in column 1. As shown in FIG . 4A , this 
as indicated by their associated completion flags in the non - zero element is ' h ' . 
completion array 323. The solver 805 reads the matrix 20 At block 910 , if the index of the identified position in the 
elements 812 in a row corresponding to x [ n ] from the CSR columns array is not equal to row_ptrs [ n + 1 ] , then not all of 
dataset 321 , a product value y [ n ] from the product vector y the columns containing non - zero elements in row n have 
430 corresponding to x [ n ] , and the solved antecedent factors been traversed , and spin looping has not been performed for 
814 from the vector x 420. The solver 805 calculates the all of the antecedent factors . Continuing the previous 
value of its factor x [ n ] by substituting the antecedent factors 25 example for row 4 , row_ptrs [ 4 + 1 ] is ‘ 10 ' . The current index 
814 , product y [ n ] 813 , and matrix elements 812 into an in the columns array for the identified non - zero element ‘ h ? 
equation for the row as defined by Ax = y , then algebraically corresponding to the antecedent factor x [ 1 ] is “ 7 ' . Since 
solving for the factor x [ n ] . these values are not equal , not all of the columns for row 4 

The solver 805 stores the solved value 815 of x [ n ] in the have been traversed , and the process 900 continues at block 
factor vector x 420 , where it is made available for solving 30 911 . 
factors in other threads . Solver 805 also determines a At block 911 , the spin loop module 801 determines 
non - zero value for the completion flag 816 for x [ n ] and whether the identified non - zero element is located on the 
asserts the completion flag in the completion array 323 by main diagonal of the matrix A 410. In one embodiment , the 
storing the value in the completion array 323. In one non - zero element is on the main diagonal if its column 
embodiment , the solver 805 determines a value of the 35 number is equal to the index of the factor ( i.e. , ‘ n ’ ) . If the 
completion flag by incrementing a highest value among the element is located on the main diagonal , the process 900 
completion flags of the antecedent factors in order to cal returns to block 909 without performing any spin looping . 
culate a level for the factor x [ n ] . Alternatively , the solver 805 The factor corresponding to the element on the main diago 
uses ' l ' or another fixed value for the completion flag . nal is the factor x [ n ] to be solved by the thread 800 ; 
FIGS . 9A and 9B illustrate a process 900 for performing 40 accordingly , spin looping is not performed to monitor its 

a high - performance SpTS on a sparse triangular matrix completion flag . The process 900 instead continues to the 
stored in a CSR format . The operations of process 900 are next antecedent factor at block 910. At block 911 , if the 
performed by components of the computing system 100 element is located off - diagonal ( not on the main diagonal ) , 
such as memory system 206 , modules 801-805 in the then the element corresponds to an antecedent factor and the 
processing core 301 , etc. 45 process 900 continues at block 913 . 
At block 901 , the memory system 206 stores a sparse At block 913 , the spin loop module 801 checks the 

triangular matrix A 410 as a CSR dataset 321. Within the completion flag for the first antecedent factor by reading the 
CSR dataset 321 , a values array stores the elements of the completion flag 810 from the completion array 323 in 
matrix A 410 , a columns array identifies a column of the memory 206. Continuing the previous example with refer 
matrix A 410 for each of the elements stored in the values 50 ence to FIG . 5 , the identified element in the columns array 
array , and a row pointers array identifies the elements in each stores an index of the completion flag for an antecedent 
row of the matrix A 410. These arrays in the CSR dataset 321 factor in the completion array 323. Thus , the spin loop 
are illustrated in FIG . 4C . module 801 reads the completion flag at completion [ 1 ] , 

The memory system 206 also stores a completion array which indicates whether the antecedent factor x [ 1 ] has been 
323 ( completion [ ] ) that includes completion flags for each 55 solved . At block 915 , if the completion flag is not asserted , 
of the factors x [ 0 ] -x [ 4 ] in the vector x 420. At block 903 , the antecedent factor has not been solved and the process 
each of the completion flags in the completion array 323 is 900 continues at block 917 . 
initialized to ' O ’ , indicating that none of the factors have At block 917 , the spin loop module 801 increments a spin 
been solved . At block 905 , multiple parallel threads are loop counter 802 that counts the number of iterations of the 
initiated , with each thread calculating one of the factors in 60 spin loop that have been performed . The counted number of 
the vector x 420. One of the parallel threads 800 is started iterations is compared to a limit 803 and , at block 919 , if the 
for calculating the value of a factor x [ n ] , with n generally number of iterations counted does not exceed the limit 803 , 
representing the index of the factor x [ n ] in the vector x 420 . the process 900 continues back to block 913. Thus , the 
At block 907 , the thread 800 determines whether the process 900 loops through blocks 913-919 to perform the 

factor x [ n ] has already been solved by a prior process by 65 spin loop for monitoring the completion flag of the first 
reading the completion flag at completion [ n ] . If completion antecedent factor until the completion flag is asserted or 
[ n ] is a non - zero value ( i.e. , asserted ) , the thread 800 exits until the limit 803 is exceeded . 



5 

10 

non - zero 

15 

US 10,691,772 B2 
13 14 

During the spin loop , if the completion flag is asserted , the vector x 420 ( e.g. , completion [ n ] corresponds to factor x [ n ] ) . 
process proceeds from block 915 to block 909. At block 909 , The completion flag indicates that x [ n ] is solved ; thus , the 
the spin loop module 801 identifies the next antecedent thread exits at block 933 . 
factor on which the solution to the factor x [ n ] depends . The At block 919 , if the number of iterations of the spin loop 
columns array identifies the non - zero elements in row n ; as counted by the counter 802 exceeds the limit 803 , the 
accordingly , any next non - zero element in the row would be process 900 continues at block 927. At block 927 , the child 
indicated in the columns array adjacent to the most recently launcher 804 checks the child_started global variable 817 , 
identified non - zero column . The index of the most recently which indicates whether a child kernel of the current kernel 
identified column is thus incremented by one . Continuing has previously been launched . If the child_started variable 
the previous example with reference to FIG . 5 , the most 817 is asserted , the thread exits at block 933 without 
recently identified column in row 4 that stores launching a child kernel and the spin loop is thus terminated . 
value is indicated at columns [ 7 ] ; thus , the next non - zero At block 927 , if the child_started variable 817 is deasserted , 
element in row 4 is indicated at columns [ 7 + 1 ] , or columns a child kernel has not previously been launched , and the 
[ 8 ] . This position in the columns array indicates that row 4 process 900 continues at block 929. At block 929 , the child 
has a non - zero value at column 3. As shown in FIG . 4A , this launcher 804 launches a child kernel and enqueues the child 
value is ‘ i ' . kernel to start after completion of the current kernel . The 
Column 3 of row 4 has an index of ' 8 ' in the columns child kernel is thus enqueued to start a new set of parallel 

array , which is not equal to row_ptrs [ 4 + 1 ] ; therefore , the threads after all of the parallel threads in the currently 
process 900 continues from block 910 to 911. Column 3 of 20 executing kernel have ended . 
row 4 is an off - diagonal element in the matrix A 410 . At block 931 , the child launcher 804 asserts the child 
Therefore , from block 911 , the process 900 continues at started flag in connection with launching and enqueueing the 
block 913. At block 913 , the spin loop module 801 reads the child kernel and its parallel threads . This prevents other 
completion flag specified at the current position in the currently executing threads that exceed the limit 803 for spin 
columns array . Continuing the previous example , columns 25 loops from launching and enqueuing another child kernel . If 
[ 8 ] specifies column 3. Therefore , the spin loop is performed a child kernel is already enqueued , any threads in the current 
for monitoring the completion flag at completion [ 3 ] , which kernel that have terminated due to the spin loop limit 803 
indicates whether x [ 3 ] is solved . Blocks 909-919 are thus will be continued in a corresponding thread in the same child 
repeated to execute the spin loops for monitoring the kernel . At block 933 , the thread exits . 
completion flags of multiple antecedent factors ( e.g. , x [ 1 ] 30 At block 935 , the processing core 301 waits for the 
and x [ 3 ] ) for the factor x [ n ] in turn . remaining parallel threads in the current kernel to end . Each 
At block 910 , if the index of the non - zero element in the of the parallel threads either finishes solving its factor , or 

columns array is equal to row_ptrs [ n + 1 ] , then all of the terminates due to exceeding the spin loop limit 803. When 
columns containing non - zero elements in row n have been all of the threads have ended , the kernel has completed and 
traversed . This means that the spin looping process has 35 the process 900 continues at block 937 . 
detected asserted completion flags for all of the antecedent At block 937 , if a child kernel has been enqueued ( i.e. , at 
factors . Continuing the previous example , row 4 includes block 929 ) , the process continues at block 939. At block 939 , 
non - zero elements in columns 1 , 3 , and 4. The last column the enqueued child kernel is started . The child kernel starts 
* 4 ' has an index of “ 9 ' in the columns array . For row 4 , a thread for each of the factors x [ n ] in the vector x 420 . 
row_ptrs [ n + 1 ] is equal to ' 10 ' . Thus , by the time the index 40 Threads for solving factors that were already solved in prior 
for the columns array is incremented to ' 10 ' , all of the threads ( as indicated by the completion array ) are terminated 
columns having non - zero elements ( having indexes from “ 7 ' via blocks 907 and 933. The remaining unsolved factors are 
to ' 9 ' ) have been traversed by the spin loop module 801 ; that solved as previously described . The new threads execute 
is , the spin looping process has determined that the comple spin loops ( i.e. , blocks 909-919 ) to determine when all of the 
tion flags for all of the antecedent factors x [ 1 ] and x [ 3 ] have 45 antecedent factors for their respective factors are available , 
been asserted . At this time , all of the antecedent factors have and solve their factors after the antecedent factors have been 
been solved ; thus , at block 921 , the solver 805 calculates the solved . Each child kernel , via one of its threads exceeding 
value of the factor x [ n ] based on the solved antecedent the spin loop limit 803 , can also launch and enqueue its own 
factors 814 , the elements 812 in row n of matrix A 410 child kernel via blocks 919 and 927-933 until all of the 
corresponding to x [ n ] , and a product value y [ n ] 813 corre- 50 factors in vector x 420 are solved and the entire SpTS is 
sponding to x [ n ] . The calculated value for x [ n ] 815 is written complete . 
to the vector x 420 in memory system 206. Continuing the When all of the factors in vector x 420 are solved , all of 
previous example where n is equal to ' 4 ' , the solver 805 the threads exit at block 933 from either block 907 or block 
calculates x [ 4 ] from ( y [ 4 ] -hx [ 1 ] -ix [ 3 ] ) / j , then writes the 925 , and no child kernel is enqueued . Thus , from block 937 , 
result to vector x 420 . 55 the process 900 continues at block 941 , where the SpTS is 

At block 923 , the solver 805 calculates a non - zero value completed 
for asserting the completion flag of x [ n ] . The solver 805 In one embodiment , the blocks 901-941 represent opera 
increments the highest valued completion flag among the tions for performing a first SpTS of the matrix A 410 , while 
completion flags of the antecedent factors on which the blocks 943-947 represent operations for performing a sec 
solving of x [ n ] depends . For x [ 4 ] , the completion flags for 60 ond SpTS of the matrix A 410 , as illustrated in FIG . 9B . For 
antecedent factors x [ 1 ] and x [ 3 ] are “ 2 ' and ' 2 ' , respectively , the second SpTS , the completion array generated from 
as shown in FIG . 6 at time 605. Since the highest valued performing the first SpTS is used when solving a second 
completion flag is ' 2 ' , the completion flag for x [ 4 ] is 3. At vector x ' in the equation Ax ' = y ' , where A is the same matrix 
block 925 , the solver 805 writes the completion flag 816 at A 410 from the first SpTS , x ' is a second vector of unknown 
a position corresponding to the factor in the completion 65 factors that is different from vector x 420 , and y ' is a second 
array 323. In one embodiment , the completion flag has the vector of known product values that is different from vector 
same index n in the completion array as the factor x [ n ] in y 430 . 



10 

15 

US 10,691,772 B2 
15 16 

At block 943 , a processing unit ( e.g. , one of the process the child started flag is deasserted , and asserting the child 
ing units 204 ) determines levels for the factors to be solved started flag in connection with the enqueueing of the new 
in the vector x ' . The level for each factor in vector x ' is thread . 
indicated by a corresponding completion flag having the The method further includes , for each factor of the 
same index as the factor in the previously generated comple- 5 plurality of factors , executing a first spin loop to monitor a 
tion array . For example , when the previously generated first completion flag in the completion array , where the first 
completion array includes the completion flags [ 1 , 2 , 2 , 2 , 3 ] , completion flag is specified at a first position in a column 
level 1 includes x / [ 0 ] , level 2 includes x / [ 1 ] , x ' [ 2 ] , and x ' [ 3 ] , array of the CSR dataset , and where the first position in the 
and level 3 includes x ' [ 4 ] . Factors in the same level are column array is indicated by a row pointer corresponding to 
solvable in parallel . the factor , and executing a second spin loop to monitor a 

At block 945 , the processing unit calculates a value for second completion flag in the completion array in response 
each of the factors x ' [ n ] in the vector x ' in an order to determining that the first completion flag is asserted and 
corresponding to the determined levels , with factors in that a second position in the column array corresponds to an 
lower - numbered levels being solved prior to factors in off - diagonal element of the sparse triangular matrix , where 
higher - numbered levels , and factors in the same level being the second completion flag is specified at the second position 
solved in parallel . Each factor x ' [ n ] is solved based on its in the column array . 
antecedent factors , the elements in a corresponding row of In the method , a position of the row pointer in a row 
the matrix A 410 , and a corresponding product value y ' [ n ] . pointer array corresponds to a position of the factor in the 
If the factors x ' [ n ] are solved in order according to the 20 vector , the row pointer is an index of the first position in the 
levels , each factor will be solved after its antecedent factors column array , and the first position of the column array 
have already been solved . After all of the factors are solved , stores an index of the completion flag in the completion 
the second SpTS is complete at block 947 . array . 

The process 900 thus allows a parallel computing system The method further includes , for each factor of the 
( e.g. , computing system 100 ) to perform a SpTS on a matrix 25 plurality of factors , storing a completion flag for each of the 
stored in the CSR format without a costly conversion of the antecedent factors , determining a value of the completion 
CSR dataset to a different format ( such as CSC ) , and without flag for the factor by incrementing a highest valued comple 
performing any costly dependency analysis . Accordingly , a tion flag among the completion flags of the antecedent 
parallel computing system employing this approach con factors , and asserting the completion flag for the factor by 
sumes less power , utilizes fewer computing resources , and 30 storing the determined value of the completion flag for the 
calculates the solution in less time compared to other factor in the completion array at a position corresponding to 
approaches for achieving the same results . the factor . 

A method includes storing a sparse triangular matrix as a The method further includes , for each factor of a plurality 
compressed sparse row ( CSR ) dataset and , for each factor of of factors in a second vector , determining a level for the 
a plurality of factors in a first vector , calculating a value of 35 factor based on a value of the completion flag corresponding 
the factor . Calculating the value of the factor includes to the factor in the completion array , and calculating a value 
identifying for the factor a set of one or more antecedent for each of the factors in the second vector in an order 
factors in the first vector , where the value of the factor is according to the determined levels , where values for at least 
dependent on each of the one or more antecedent factors ; in two of the plurality of factors in the same level are calculated 
response to a completion array indicating that all of the one 40 in parallel . 
or more antecedent factor values are solved , calculating the In the method , the CSR dataset is stored in a memory 
value of the factor based on one or more elements in a row system and , for each factor of the plurality of factors , the 
of the matrix , and a product value corresponding to the row ; value of the factor is calculated in a solver circuit coupled 
and in the completion array , asserting a first completion flag with the memory system . 
for the factor indicating that the factor is solved . The method further includes reading the first completion 

The method further includes storing elements of the flag from the completion array using a spin loop circuit , 
matrix in a values array of the CSR dataset , in a columns where the completion array is stored in a memory system 
array of the CSR dataset , identifying a column of the matrix and asserting the first completion flag in the completion 
for each of the elements stored in the values array , and in a array is performed by a solver circuit coupled with the spin 
row pointers array of the CSR dataset , identifying the 50 loop circuit and with the memory system . 
elements in each row of the matrix . A computing device includes a memory for storing a 

The method further includes , for each factor of the sparse triangular matrix as a compressed sparse row ( CSR ) 
plurality of factors , initiating a thread for calculating the dataset and a processing unit coupled with the memory . The 
value of the factor , where the thread is one of a plurality of processing unit is for calculating , for each factor of a 
threads executed in parallel . 55 plurality of factors in a first vector , a value of the factor by 

The method further includes , for each thread of the identifying for the factor a set of one or more antecedent 
plurality of threads , counting a number of iterations of a spin factors in the first vector , where the value of the factor is 
loop executed in the thread for monitoring a second comple dependent on each of the one or more antecedent factors , in 
tion flag in the completion array , where the second comple response to a completion array indicating that all of the one 
tion flag is associated with one of the antecedent factors , and 60 or more antecedent factor values are solved , calculating the 
in response to the number of iterations exceeding a limit , value of the factor based on one or more elements in a row 
terminating the spin loop , enqueueing a new thread for of the matrix and a product value corresponding to the row , 
execution when all of the plurality of parallel processing and in the completion array , asserting a completion flag for 
threads have completed , and monitoring the completion flag the factor indicating that the factor is solved . 
in the new thread . In the computing device , the CSR dataset further includes 

The method further includes checking a child started flag , a values array for storing elements of the matrix , a columns 
where the enqueueing of the new thread is performed when array for identifying a column of the matrix for each of the 

45 

65 



10 

US 10,691,772 B2 
17 18 

elements stored in the values array , and a row pointers array In the computing system , each processing unit in the set 
for identifying elements in each row of the matrix . of processing units further includes a plurality of processing 

In the computing device , the processing unit includes a cores on a single integrated circuit die , where each of the 
plurality of processing cores each for executing a thread of plurality of processing cores is for executing one of the 
a plurality of parallel threads for calculating the value of one 5 plurality of parallel threads . 
of the factors in the vector . In the computing system , each processing unit in the set 

In the computing device , each of the plurality of process of processing units is a graphics processing unit ( GPU ) on 
ing cores is further for monitoring a completion flag in the a separate integrated circuit die from other processing units 

in the set of processing units . completion array by executing a spin loop in the thread , and As used herein , the term " coupled to ” may mean coupled in response to a number of iterations of the spin loop directly or indirectly through one or more intervening com exceeding a predetermined limit , terminate the spin loop , 
and when all of the plurality of parallel processing threads ponents . Any of the signals provided over various buses 

described herein may be time multiplexed with other signals have completed , execute a new thread for monitoring the and provided over one or more common buses . Additionally , completion flag . 15 the interconnection between circuit components or blocks In the computing device , the processing unit includes a may be shown as buses or as single signal lines . Each of the plurality of processing cores each for executing a first spin buses may alternatively be one or more single signal lines 
loop to monitor a first completion flag in the completion and each of the single signal lines may alternatively be 
array , where the first completion flag is specified at a first buses . 
position in a column array of the CSR dataset , where the first 20 Certain embodiments may be implemented as a computer 
position in the column array is indicated by a row pointer program product that may include instructions stored on a 
corresponding to one of the plurality of factors in a first non - transitory computer - readable medium . These instruc 
vector , and execute a second spin loop to monitor a second tions may be used to program a general - purpose or special 
completion flag in the completion array in response to purpose processor to perform the described operations . A 
determining that the first completion flag is asserted and that 25 computer - readable medium includes any mechanism for 
a second position in the column array corresponds to an storing or transmitting information in a form ( e.g. , software , 
off - diagonal element of the sparse triangular matrix , where processing application ) readable by a machine ( e.g. , a com 
the second completion flag is specified at the second position puter ) . The non - transitory computer - readable storage 
in the column array . medium may include , but not limited to , magnetic storage 

The computing device further includes a completion array 30 medium ( e.g. , floppy diskette ) ; optical storage medium ( e.g. , 
in the memory , where the completion array is for storing a CD - ROM ) ; magneto - optical storage medium ; read - only 
completion flag for each of the plurality of factors , where the memory ( ROM ) ; random - access memory ( RAM ) ; erasable 
processing unit is further for determining , for each factor of programmable memory ( e.g. , EPROM and EEPROM ) ; flash 
the plurality of factors , a value of the completion flag for the memory , or another type of medium suitable for storing 
factor by incrementing a highest value among the comple- 35 electronic instructions . 
tion flags of the antecedent factors , and assert the completion Additionally , some embodiments may be practiced in 
flag for the factor by storing the determined value of the distributed computing environments where the computer 
completion flag for the factor in the completion array at a readable medium is stored on and / or executed by more than 
position corresponding to the factor . one computer system . In addition , the information trans 

In the computing device , the processing unit is further for 40 ferred between computer systems may either be pulled or 
determining , for each factor of a plurality of factors in a pushed across the transmission medium connecting the 
second vector , a level for the factor based on a value of the computer systems . 
completion flag corresponding to the factor in the comple Generally , a data structure representing the computing 
tion array , and calculate a value for each of the factors in the device 101 and / or portions thereof carried on the computer 
second vector in an order according to the determined levels , 45 readable storage medium may be a database or other data 
where values for at least two of the plurality of factors in the structure which can be read by a program and used , directly 
same level are calculated in parallel . or indirectly , to fabricate the hardware including the com 

A computing system includes a memory system for stor puting device 101. For example , the data structure may be a 
ing a sparse triangular matrix as a compressed sparse row behavioral - level description or register - transfer level ( RTL ) 
( CSR ) dataset and a set of one or more processing units 50 description of the hardware functionality in a high level 
coupled with the memory system . Each processing unit in design language ( HDL ) such as Verilog or VHDL . The 
the set of processing units is for calculating , for each factor description may be read by a synthesis tool which may 
of a plurality of factors in a first vector , a value of the factor synthesize the description to produce a netlist including a list 
by identifying for the factor a set of one or more antecedent of gates from a synthesis library . The netlist includes a set of 
factors in the first vector , where the value of the factor is 55 gates which also represent the functionality of the hardware 
dependent on each of the one or more antecedent factors , in including the computing device 101. The netlist may then be 
response to a completion array indicating that all of the one placed and routed to produce a data set describing geometric 
or more antecedent factor values are solved , calculating the shapes to be applied to masks . The masks may then be used 
value of the factor based on one or more elements in a row in various semiconductor fabrication steps to produce a 
of the matrix and a product value corresponding to the row , 60 semiconductor circuit or circuits corresponding to the com 
and in the completion array , asserting a completion flag for puting device 101. Alternatively , the database on the com 
the factor indicating that the factor is solved . puter - readable storage medium may be the netlist ( with or 

In the computing system , each processing unit in the set without the synthesis library ) or the data set , as desired , or 
of processing units is further for executing at least one of a Graphic Data System ( GDS ) II data . 
plurality of parallel threads , where each of the plurality of 65 Although the operations of the method ( s ) herein are 
parallel threads calculates a value for one of the plurality of shown and described in a particular order , the order of the 
factors . operations of each method may be altered so that certain 



5 

15 

US 10,691,772 B2 
19 20 

operations may be performed in an inverse order or so that 5. The method of claim 4 , further comprising : 
certain operations may be performed , at least in part , con checking a child started flag , wherein the enqueueing of 
currently with other operations . In another embodiment , the child kernel is performed when the child started flag 
instructions or sub - operations of distinct operations may be is deasserted ; and 
in an intermittent and / or alternating manner . asserting the child started flag in connection with the 

In the foregoing specification , the embodiments have enqueueing of the child kernel . 
been described with reference to specific exemplary embodi 6. The method of claim 1 , further comprising , for each ments thereof . It will , however , be evident that various factor of the subset of factors : 
modifications and changes may be made thereto without executing a first spin loop to monitor a first completion departing from the broader scope of the embodiments as set 10 flag in the completion array , wherein the first comple forth in the appended claims . The specification and drawings tion flag is specified at a first position in a column array are , accordingly , to be regarded in an illustrative sense rather 
than a restrictive sense . of the CSR dataset , and wherein the first position in the 
What is claimed is : column is indicated by a row pointer correspond array 

1. A method , comprising : ing to the factor ; and 
in a memory device , storing a sparse triangular matrix as executing a second spin loop to monitor a second comple 

a compressed sparse row ( CSR ) dataset ; tion flag in the completion array in response to deter 
in a processing unit comprising a plurality of processing mining that the first completion flag is asserted and that 

cores , calculating a value for each of a subset of factors a second position in the column array corresponds to an 
in a first vector by , for each factor in the subset of 20 off - diagonal element of the sparse triangular matrix , 
factors in the first vector , calculating the value of the wherein the second completion flag is specified at the 
factor by : second position in the column array . 
identifying for the factor a set of one or more anteced 7. The method of claim 6 , wherein for each factor of the 

ent factors in the first vector , wherein the value of the subset of factors : 
factor is dependent on each of the one or more 25 a position of the row pointer in a row pointer array 
antecedent factors ; corresponds to a position of the factor in the vector ; 

in response to a completion array indicating that all of the row pointer is an index of the first position in the 
the one or more antecedent factor values are solved , column array ; and 
initiating a thread in one of the plurality of process the first position of the column array stores an index of the 
ing cores for calculating the value of the factor , 30 completion flag of the factor in the completion array . 
wherein the thread is executed in the one of the 8. The method of claim 1 , further comprising , for each 
plurality of processing cores based on factor of the subset of factors : 
one or more elements in a row of the and storing a completion flag for each of the antecedent 
a product value corresponding to the one or more factors ; 

antecedent factor values , the value of the factor , 35 determining a value of the completion flag for the factor 
and the one or more elements in the row ; and by incrementing a highest valued completion flag 

in the completion array , asserting a completion flag for among the completion flags of the antecedent factors ; 
the factor indicating that the factor is solved . and 

2. The method of claim 1 , wherein storing the sparse asserting the completion flag for the factor by storing the 
triangular matrix as the CSR dataset further comprises : determined value of the completion flag for the factor 

storing elements of the matrix in a values array of the CSR in the completion array at a position corresponding to 
dataset ; the factor . 

in a columns array of the CSR dataset , identifying a 9. The method of claim 8 , further comprising : 
column of the matrix for each of the elements stored in for each factor of a plurality of factors in a second vector , 
the values array ; and determining a level for the factor based on a value of 

in a row pointers array of the CSR dataset , identifying the the completion flag corresponding to the factor in the 
elements in each row of the matrix . completion array ; and 

3. The method of claim 1 , wherein for each factor of the calculating a value for each of the factors in the second 
subset of factors : vector in an order according to the determined levels , 

the thread is one of a plurality of parallel threads executed 50 wherein values for at least two of the plurality of factors 
in parallel with each other , wherein each of the plurality in the same level are calculated in parallel . 
of parallel threads is for calculating one of the plurality 10. The method of claim 1 , wherein : 
of factors . the CSR dataset is stored in a memory system , and 

4. The method of claim 3 , further comprising , for each for each factor of the subset of factors , the value of the 
thread of the plurality of threads : factor is calculated in a solver circuit coupled with the 

counting a number of iterations of a spin loop executed in memory system . 
the thread for monitoring a second completion flag in 11. The method of claim 1 , further comprising : 
the completion array , wherein the second completion creating the completion array ; and 
flag is associated with one of the antecedent factors ; reading the completion flag from the completion array 
and using a spin loop circuit , wherein : 

in response to the number of iterations exceeding a limit , the completion array is stored in a memory system , and 
terminating the spin loop , asserting the completion flag in the completion array is 
enqueueing a child kernel for execution when all of the performed by a solver circuit coupled with the spin 

plurality of parallel processing threads have com loop circuit and with the memory system . 
pleted , and 12. A computing device , comprising : 

monitoring the second completion flag in a new thread a memory configured to store a sparse triangular matrix as 
in the child kernel . a compressed sparse row ( CSR ) dataset ; and 

40 

45 

55 

60 

65 



5 

10 

20 

array ; and 
30 

US 10,691,772 B2 
21 22 

a processing unit comprising a plurality of processing 17. The computing device of claim 12 , further compris 
cores , wherein the processing core is coupled with the ing : 
memory and is configured to : a completion array in the memory , wherein the comple 

for each factor of a subset of factors in a first vector , tion array is configured to store a completion flag for 
calculate a value of the factor by : each of the subset of factors , 

wherein the processing unit is further configured to , for identifying for the factor a set of one or more anteced each factor of the subset of factors : 
ent factors in the first vector , wherein the value of the determine a value of the completion flag for the factor factor is dependent on each of the one or more by incrementing a highest value among the comple 
antecedent factors ; tion flags of the antecedent factors , and 

in response to a completion array indicating that all of assert the completion flag for the factor by storing the 
the one or more antecedent factor values are solved , determined value of the completion flag for the 
initiating a thread in one of the plurality of process factor in the completion array at a position corre 
ing cores for calculating the value of the factor , sponding to the factor . 
wherein the thread is executed in the one of the 18. The computing device of claim 17 , wherein the 
plurality of processing cores based on 15 processing unit is further configured to : 
one or more elements in a row of the matrix , and for each factor of a plurality of factors in a second vector , 

determine a level for the factor based on a value of the a product value corresponding to the antecedent completion flag corresponding to the factor in the 
factor values , the value of the factor , and the one completion array , and 
or more elements in the row ; and calculate a value for each of the factors in the second 

in the completion array , asserting a completion flag for vector in an order according to the determined levels , 
the factor indicating that the factor is solved . wherein values for at least two of the plurality of factors 

13. The con ting device of claim 12 , wherein the CSR in the same level are calculated in parallel . 
dataset further comprises : 19. A computing system , comprising : 

a values array configured to store elements of the matrix ; 25 a memory system configured to store a sparse triangular 
matrix as a compressed sparse row ( CSR ) dataset ; a columns array configured to identify a column of the a set of one or more processing units coupled with the matrix for each of the elements stored in the values memory system , wherein each processing unit in the set 
of processing units comprises a plurality of processing 

a row pointers array configured to identify elements in cores and is configured to : 
each row of the matrix . for each factor of a subset of factors in a first vector , 

14. The computing device of claim 12 , wherein the calculate a value of the factor by : 
processing unit comprises a plurality of processing cores identifying for the factor a set of one or more anteced 
each configured to : ent factors in the first vector , wherein the value of the 

factor is dependent on each of the one or more execute a thread of a plurality of parallel threads for antecedent factors ; calculating the value of one of the factors in the vector . in response to a completion array indicating that all of 
15. The computing device of claim 14 , wherein each of the one or more antecedent factor values are solved , 

the plurality of processing cores is further configured to : initiating a thread in one of the plurality of process 
monitor the completion flag in the completion array by ing cores for calculating the value of the factor , 

executing a spin loop in the thread ; and wherein the thread is executed in the one of the 
in response to a number of iterations of the spin loop plurality of processing cores based on 

exceeding a predetermined limit , one or more elements in a row of the matrix , and 
a product value corresponding to the antecedent terminate the spin loop , and factor values , the value of the factor , and the one 

when all of the plurality of parallel processing threads or more elements in the row ; and 
have completed , execute a new thread for monitoring in the completion array , asserting a completion flag for 
the completion flag . the factor indicating that the factor is solved . 

16. The computing device of claim 12 , wherein the 20. The computing system of claim 19 , wherein each 
processing unit comprises a plurality of processing cores processing unit in the set of processing units is further 
each configured to : configured to : 

execute at least one of a plurality of parallel threads , execute a first spin loop to monitor a first completion flag wherein each of the plurality of parallel threads calcu in the completion array , wherein the first completion lates a value for one of the subset of factors . flag is specified at a first position in a column array of 21. The computing system of claim 20 , wherein each 
the CSR dataset , wherein the first position in the processing unit in the set of processing units further com 
column array is indicated by a row pointer correspond- 55 prises a plurality of processing cores on a single integrated 
ing to one of the subset of factors in the first vector , and circuit die , wherein each of the plurality of processing cores 

execute a second spin loop to monitor a second comple is configured to execute one of the plurality of parallel 
tion flag in the completion array in response to deter threads . 
mining that the first completion flag is asserted and that 22. The computing system of claim 19 , wherein each 
a second position in the column array corresponds to an 60 processing unit in the set of processing units is a graphics 
off - diagonal element of the sparse triangular matrix , processing unit ( GPU ) on a separate integrated circuit die 
wherein the second completion flag is specified at the from other processing units in the set of processing units . 
second position in the column array . 

35 

40 

45 

50 


